Solusi Virtual Try-On Kacamata Berbasis AI dengan Integrasi Model Deep Learning untuk E-Commerce Fashion

Arnata Nur Rasyid, Asmawati Asmawati, Widya Viona Septi Tanjung, Sumanto Sumanto, Imam Budiawan, Roida Pakpahan

Abstract

Abstrak : 

Banyak pengguna menghadapi kesulitan dalam memilih kacamata secara daring karena tidak dapat memastikan apakah model tertentu sesuai dengan bentuk wajah mereka. Masalah ini sering menimbulkan ketidakpuasan pelanggan dan tingginya tingkat pengembalian produk. Penelitian ini bertujuan untuk mengembangkan solusi Virtual Try-On kacamata berbasis kecerdasan buatan (AI), yang mengintegrasikan model deep learning untuk menciptakan pengalaman belanja daring yang lebih interaktif dan personal. Sistem bekerja dengan mendeteksi bentuk wajah dari foto yang diunggah pengguna menggunakan model Face Shape Detection yang telah dilatih dan mencapai akurasi hingga 89% kemudian memberikan rekomendasi kacamata yang paling cocok berdasarkan sistem rekomendasi Rule-Based. Setelah pengguna memilih salah satu produk dari daftar tersebut, sistem memanfaatkan AI Nano Banana untuk menggabungkan citra wajah dan produk kacamata secara realistis. Teknologi utama yang digunakan meliputi EfficientNetB2 sebagai model CNN utama, InsightFace untuk deteksi wajah presisi tinggi, dan AdamW sebagai algoritma optimasi. Hasil pengujian menunjukkan bahwa sistem ini efektif dalam menghasilkan visualisasi try-on yang akurat dan memuaskan, serta berpotensi meningkatkan konversi penjualan di platform e-commerce fashion.

====================================================

Abstract : 

Many users experience difficulty in selecting eyeglasses online due to the inability to determine whether a particular model suits their facial shape. This issue often results in customer dissatisfaction and high product return rates. This study aims to develop an AI-based virtual try-on solution for eyeglasses by integrating deep learning models to create a more interactive and personalized online shopping experience. The system functions by detecting the user’s face shape from an uploaded photo using a pre-trained Face Shape Detection model that achieves an accuracy of up to 89%, followed by a rule-based recommendation system that suggests the most suitable eyeglass frames. Once the user selects a product from the recommended list, the system utilizes AI Nano Banana to realistically generate a composite image of the user's face wearing the selected eyeglasses. The core technologies implemented include EfficientNetB2 as the primary CNN model for visual feature extraction, InsightFace for high-precision face detection, and AdamW as the optimization algorithm. Experimental results demonstrate that the system effectively generates accurate and realistic try-on visualizations, which are not only satisfactory to users but also have the potential to increase sales conversion rates in fashion e-commerce platforms.

Keywords

Kacamata, Virtual Try-On, Deep Learning, E-Commerce, Kecerdasan Buatan

Full Text:

PDF

References

[1] I. N. Oktaviani and M. I. Gautama, “Tren Kacamata Bergaya: Studi Fenomenologis pada Mahasiwa Fakultas Ilmu Sosial Universitas Negeri Padang,” Jurnal Perspektif, vol. 3, no. 4, p. 570, Oct. 2020, doi: http://dx.doi.org/10.24036/perspektif.v3i4.310.

[2] M. Hidayatillah, N. Mardiyantoro, and M. Hidayat, “Sistem Identifikasi Bentuk Wajah Untuk Pemilihan Frame Kacamata Menggunakan Metode Transfer Learning,” vol. 1, no. 1, pp. 2828–0210, 2022, doi: https://doi.org/10.32699/biner.v1i1.2853.

[3] A. D. Ulhaq, D. Hartanti, and A. A. Sari, “Sistem Rekomendasi Pemilihan Jenis Lensa Kacamata Menggunakan Metode Knowladge Based Recommendation (Studi Kasus :Optik Wiratama Kacamata 2),” vol. 10, no. 1, pp. 2527–9661, 2025, doi: http://dx.doi.org/10.30998/string.v10i1.28938.

[4] A. Gabriel, A. D. Ajriya, C. Z. N. Fahmi, and P. W. Handayani, “The influence of augmented reality on E-commerce: A case study on fashion and beauty products,” Cogent Business and Management, vol. 10, no. 2, pp. 2331–1975, 2023, doi: 10.1080/23311975.2023.2208716.

[5] Fitting Box, “How Virtual Try-On Boosts Eyewear Sales: A Data-Driven Look.” Accessed: Oct. 30, 2025. [Online]. Available: https://fittingbox.com/en/resources/blog/how-virtual-try-on-boosts-eyewear-sales-a-data-driven-look

[6] J. Wang, P. Liu, J. Liu, and W. Xu, “Text-Guided Eyeglasses Manipulation With Spatial Constraints,” vol. 26, pp. 4375–4388, 2024.

[7] T. Kasuma and R. Oktarina, “Pengaruh Pemanfaatan Fitur Virtual Try-On Berbasis Augmented Reality pada Aplikasi Tiktok dalam Pemilihan Produk Cushion Oleh Mahasiswa di Fakultas Pariwisata dan Perhotelan Universitas Negeri Padang,” Jurnal Kajian dan Penelitian Umum, vol. 2, no. 5, pp. 87–98, Sep. 2024, doi: 10.47861/jkpu-nalanda.v2i5.1305.

[8] N. Zahrah and B. Suranto, “Pengembangan Antarmuka Aplikasi Bergerak Dengan Perangkat Prototyping Berbasis Kecerdasan Buatan,” Idealis: Indonesia Journal Information System, vol. 8, no. 2, pp. 210–219, 2025, [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexNaufalianaZahrah|http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index|

[9] D. Nurhaliza and D. Hendra, “Era Revolusi 5.0 Menuntut Adaptasi Cepat Terhadap Perkembangan Teknologi, Terutama Dalam Bidang Kecerdasan Buatan (AI) Dan Digitalisasi,” Prosiding Seminar Nasional Manajemen, vol. 4, no. 1, pp. 306–310, 2025, [Online]. Available: http://openjournal.unpam.ac.id/index.php/PSM/index

[10] W. Ji and L. Jin, “Face Shape Classification Based on MTCNN and FaceNet,” in Proceedings - 2021 2nd International Conference on Intelligent Computing and Human-Computer Interaction, ICHCI 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 167–170. doi: 10.1109/ICHCI54629.2021.00042.

[11] S. Adapa and V. Enireddy, “Deep learning based face shape classification system with binary feature selection model,” vol. 296, pp. 0957–4174, 2026.

[12] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-stage Dense Face Localisation in the Wild,” May 2019, [Online]. Available: http://arxiv.org/abs/1905.00641

[13] V. Patel and R. Chellappa, “HyperFace: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition,” vol. 41, no. 1, pp. 121–135, 2019.

[14] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Nov. 01, 2015, Elsevier B.V. doi: 10.1016/j.eij.2015.06.005.

[15] T. Islam, A. Miron, X. Liu, and Y. Li, “Deep Learning in Virtual Try-On: A Comprehensive Survey”, doi: 10.1109/ACCESS.2023.0322000.

[16] T. Karras NVIDIA and S. Laine NVIDIA, “A Style-Based Generator Architecture for Generative Adversarial Networks Timo Aila NVIDIA.” [Online]. Available: https://github.com/NVlabs/stylegan

[17] X. Han, Z. Wu, Z. Wu, R. Yu, and L. S. Davis, “VITON: An Image-based Virtual Try-on Network,” 2018. Accessed: Dec. 23, 2025. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018/papers/Han_VITON_An_Image-Based_CVPR_2018_paper.pdf

[18] M. Riar, J. J. Korbel, N. Xi, R. Zarnekow, and J. Hamari, “The use of augmented reality in retail: A review of literature,” in Proceedings of the Annual Hawaii International Conference on System Sciences, IEEE Computer Society, 2021, pp. 638–647. doi: 10.24251/hicss.2021.078.

[19] R. H. Rifat, S. Siddique, L. R. Das, and M. A. Haque, “Facial Shape-Based Eyeglass Recommendation Using Convolutional Neural Networks,” in 2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 867–872. doi: 10.1109/SSCI52147.2023.10371836.

[20] Q. Zhang, Y. Guo, P.-Y. Laffont, T. Martin, and M. Gross, “A Virtual Try-on System for Prescription Eyeglasses.”

[21] F. R. Dewi, N. L. Azizah, and H. Hindarto, “Implementasi Fuzzy Tsukamoto Dan Algoritma Genetika Pada Pemilihan Skincare,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 95–102, Apr. 2023, doi: 10.47233/jteksis.v5i2.785.

[22] N. Lama, “Face Shape Dataset.” Accessed: Nov. 07, 2025. [Online]. Available: https://www.kaggle.com/datasets/niten19/face-shape-dataset

Refbacks

  • There are currently no refbacks.