Pengembangan Sistem Pendukung Keputusan Audit Mutu Internal Berbasis IAPS 4.0 Menggunakan Algoritma Profile Matching
Abstract
Abstrak :
Audit Mutu Internal (AMI) merupakan salah satu elemen utama dalam Sistem Penjaminan Mutu Internal (SPMI) perguruan tinggi yang bertujuan menjamin penyelenggaraan tridharma sesuai standar mutu. Namun, proses AMI sering menghadapi kendala seperti subjektivitas auditor, keterlambatan pelaporan, dan kurangnya integrasi data digital. Penelitian ini bertujuan mengembangkan Sistem Pendukung Keputusan Audit Mutu Internal berbasis IAPS 4.0 dengan menerapkan algoritma Profile Matching untuk meningkatkan objektivitas dan efisiensi penilaian. Sistem dibangun menggunakan framework CodeIgniter 4 dengan arsitektur Model–View–Controller (MVC) serta basis data MySQL. Metode penelitian yang digunakan adalah Research and Development (R&D) dengan model Waterfall, meliputi analisis kebutuhan, perancangan, implementasi, dan pengujian sistem. Pengujian dilakukan melalui black box testing dan validasi hasil perhitungan algoritma dibandingkan dengan hasil audit manual. Hasil menunjukkan bahwa sistem berfungsi dengan baik secara fungsional dan memiliki tingkat akurasi sebesar 94,2% (selisih rata-rata 5,8%) terhadap hasil audit manual. Selain itu, sistem mampu mengurangi waktu pelaksanaan audit hingga 40% dan meningkatkan objektivitas penilaian. Integrasi metode Profile Matching dengan indikator IAPS 4.0 menjadi inovasi baru yang belum diterapkan sebelumnya di konteks Perguruan Tinggi Keagamaan. Dengan demikian, sistem ini dapat menjadi model decision support system berbasis data yang efektif dalam mendukung pelaksanaan AMI secara objektif, efisien, dan terukur.
=================================================
Abstract :
The Internal Quality Audit (IQA) is a core component of the university’s Internal Quality Assurance System (IQAS), aiming to ensure the implementation of the tridharma complies with national quality standards. However, IQA processes often face issues such as auditor subjectivity, delayed reporting, and lack of integrated digital documentation. This study aims to develop a Decision Support System for Internal Quality Audit based on IAPS 4.0, integrating the Profile Matching algorithm to enhance the objectivity and efficiency of evaluations. The system was developed using the CodeIgniter 4 framework with a Model–View–Controller (MVC) architecture and MySQL database. The research employed a Research and Development (R&D) approach with the Waterfall model, including needs analysis, system design, implementation, and testing. The system was evaluated using black box testing and validated by comparing the algorithmic results with manual audit outcomes. The findings indicate that the system operates effectively with an accuracy level of 94.2% (average deviation of 5.8%) compared to manual audits. It also reduces audit time by up to 40% and minimizes auditor subjectivity. Integrating the Profile Matching method with IAPS 4.0 indicators represents a novel contribution, particularly in the context of Islamic higher education institutions. Therefore, the system serves as a data-driven decision support model that enhances the effectiveness, efficiency, and objectivity of the internal quality audit process.
Keywords
Full Text:
PDFReferences
[1] Direktorat Pembelajaran dan Kemahasiswaan, Pedoman Implementasi Sistem Penjaminan Mutu Internal (SPMI) Bagi Perguruan Tinggi Penyelenggara Pendidikan Akademik, 1st ed., vol. 1. Direktorat Jenderal Pendidikan Tinggi, Riset, dan Teknologi Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, 2024.
[2] T. M. Tarigan and F. Zahara, “Problematika Pelaksanaan Audit Mutu Internal Di Perguruan Tinggi Keagamaan Islam,” Res. Dev. J. Educ., vol. 9, no. 2, p. 1150, Oct. 2023, doi: 10.30998/rdje.v9i2.14968.
[3] Norfifah, V. J. Julianto, and Yunita Prastyaningsih, “Rancang Bangun Sistem Informasi Audit Mutu Internal,” J. Appl. Comput. Sci. Technol., vol. 4, no. 2, pp. 108–117, Nov. 2023, doi: 10.52158/jacost.v4i2.539.
[4] L. Theodorakopoulos, A. Theodoropoulou, and C. Halkiopoulos, “Cognitive Bias Mitigation in Executive Decision-Making: A Data-Driven Approach Integrating Big Data Analytics, AI, and Explainable Systems,” Electronics, vol. 14, no. 19, p. 3930, Oct. 2025, doi: 10.3390/electronics14193930.
[5] Sunarti, R. Y. Rangga, and Y. N. Marlim, “Application Profile Matching Method for Employees Online Recruitment,” IOP Conf. Ser. Earth Environ. Sci., vol. 97, p. 012035, Dec. 2017, doi: 10.1088/1755-1315/97/1/012035.
[6] Safrizal, L. Tanti, R. Puspasari, and B. Triandi, “Employee Performance Assessment with Profile Matching Method,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia: IEEE, Aug. 2018, pp. 1–6. doi: 10.1109/CITSM.2018.8674256.
[7] J. Fitriana, E. F. Ripanti, and T. Tursina, “Sistem Pendukung Keputusan Pemilihan Mahasiswa Berprestasi dengan Metode Profile Matching,” J. Sist. Dan Teknol. Inf. JUSTIN, vol. 6, no. 4, p. 153, Oct. 2018, doi: 10.26418/justin.v6i4.27113.
[8] R. D. Risanty, A. H. Kusuma, and Y. Adharani, “Penilaian Hasil Audit Mutu Internal Menggunakan Metode Profile Matching”.
[9] Z. Yi and P. Liu, “Design and Implementation of Internal Audit Information Platform System in Colleges and Universities:,” Inf. Resour. Manag. J., vol. 38, no. 1, pp. 1–22, Sept. 2025, doi: 10.4018/IRMJ.388951.
[10] “Model-View-Controller — CodeIgniter 3.1.13 documentation.” Accessed: Oct. 07, 2025. [Online]. Available: https://codeigniter.com/userguide3/overview/mvc.html
[11] Y. Bassil, “A Simulation Model for the Waterfall Software Development Life Cycle,” 2012, arXiv. doi: 10.48550/ARXIV.1205.6904.
[12] Pedoman Penilaian Akreditasi Program Studi 4.0. BAN-PT, 2019. Accessed: Oct. 07, 2025. [Online]. Available: https://www.banpt.or.id/wp-content/uploads/2019/10/Lampiran-5-PerBAN-PT-5-2019-tentang-IAPS-Pedoman-Penilaian.pdf
[13] S. J. Briscilla and R. Sundarrajan, “A Multi-Criteria Decision Making for Employee Selection Using SAW and Profile Matching,” J. Adv. Comput. Intell. Intell. Inform., vol. 28, no. 5, pp. 1117–1125, Sept. 2024, doi: 10.20965/jaciii.2024.p1117.
[14] J. Nielsen, Usability engineering. Boston: Academic Press, 1993.
Refbacks
- There are currently no refbacks.





