Sistem Monitoring Lingkungan Berbasis IoT pada Aplikasi Smart Farming Berbasis Arduino Menggunakan Protokol MQTT

Latifah Citra Mahkota, Medilla Kusriyanto

Abstract

Abstrak : 

Meskipun sumber daya pertaniannya melimpah, Indonesia masih berjuang untuk mencapai swasembada pangan. Indonesia masih bergantung pada impor untuk beberapa bahan pangan, yang menunjukkan produktivitas pertanian nasional belum optimal. Tantangan utama meliputi terbatasnya akses petani terhadap informasi, ketergantungan pada metode konvensional yang tidak efisien, dan kurangnya pemanfaatan teknologi modern di lapangan. Penelitian ini mengatasi kendala tersebut dengan merancang dan menguji sistem pemantauan lingkungan berbasis Internet of Things (IoT) untuk mendukung pertanian cerdas. Sistem ini memanfaatkan empat sensor utama, yaitu sensor DHT11, Soil Moisture Hygrometer, LDR, serta sensor curah hujan. Data sensor dikumpulkan oleh Arduino Uno, disimpan di MicroSD Card, dan dikirimkan ke NodeMCU ESP8266 untuk diteruskan ke broker  MQTT HiveMQ. Data sensor divisualisasikan secara real-time pada dashboard  web yang dilengkapi sistem notifikasi ambang batas. Hasil pengujian menunjukkan bahwa sensor DHT11 stabil dalam mengukur suhu (30–32 °C) dan sensitif terhadap kelembaban (76–92 %), Soil Moisture Hygrometer mampu membedakan kondisi tanah dari kering hingga jenuh, LDR menunjukkan variasi nilai sesuai intensitas cahaya (47–667), dan sensor hujan efektif mendeteksi kondisi basah maupun kering (620–846). Sistem ini berhasil memantau kondisi lingkungan pertanian secara real-time, memberikan notifikasi ketika parameter melewati ambang batas, dan mendukung pengambilan keputusan dalam pengelolaan pertanian cerdas dan berkelanjutan.

================================================

Abstract :

Indonesia, despite abundant agricultural resources, continues to face challenges in achieving food self-sufficiency. Reliance on imports highlights suboptimal national productivity. Key obstacles include farmers’ limited access to information, dependence on inefficient conventional methods, and underutilization of modern technology. This research addresses these issues by designing and testing an Internet of Things (IoT)-based environmental monitoring system to support smart agriculture. The system employs four sensors: DHT11, Soil Moisture Hygrometer, LDR, and a rainfall sensor. Data from these sensors is collected by an Arduino Uno, stored on a MicroSD Card, and transmitted via NodeMCU ESP8266 to the HiveMQ MQTT broker . A web dashboard  visualizes the data in real-time and provides threshold-based notifications. Test results show the DHT11 sensor is stable in measuring temperature (30–32°C) and sensitive to humidity (76–92%). The Soil Moisture Hygrometer effectively distinguishes soil conditions from dry to saturated. The LDR records variations in light intensity (47–667), while the rainfall sensor reliably detects wet and dry states (620–846). Overall, the system successfully monitors agricultural environmental conditions in real-time, issues alerts when parameters exceed thresholds, and supports informed decision-making for smart, sustainable agricultural management.


Keywords

Pertanian Pintar, MQTT, IoT, Webserver

Full Text:

PDF

References

[1] Rachmini Saparita, “PENDUDUK DAN KEBUTUHAN PANGAN DI INDONESIA 2005-2050: SUATU PROYEKSI,” J. Mat. Sains Dan Teknol., vol. 7, no. 1, pp. 25–39, Aug. 2006, doi: 10.33830/jmst.v7i1.626.2006.

[2] H. S. Lestari, “PERTANIAN CERDAS SEBAGAI UPAYA INDONESIA MANDIRI PANGAN,” AGRITA AGri, vol. 2, no. 1, p. 55, June 2020, doi: 10.35194/agri.v2i1.983.

[3] V. Dankan Gowda, M. Sandeep Prabhu, M. Ramesha, J. M. Kudari, and A. Samal, “Smart Agriculture and Smart farming using IoT Technology,” J. Phys. Conf. Ser., vol. 2089, no. 1, p. 012038, Nov. 2021, doi: 10.1088/1742-6596/2089/1/012038.

[4] M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, and R. Kaliaperumal, “Smart farming: Internet of Things (IoT)-Based Sustainable Agriculture,” Agriculture, vol. 12, no. 10, p. 1745, Oct. 2022, doi: 10.3390/agriculture12101745.

[5] P. Asnur et al., “IMPLEMENTASI PERTANIAN CERDAS BERBASIS INTERNET OF THINGS DI DESA WISATA MUCILA - MUNJUL, JAKARTA TIMUR,” J. Pengabdi. Kpd. Masy. Darma Saskara, vol. 4, no. 1, pp. 1–7, 2024, doi: 10.35760/abdimasug.2024.v4i1.11497.

[6] M. Radja and A. Mude, “Revolusi Pertanian Cerdas Melalui Teknologi Multi Sensor Berbasis IoT,” 2025.

[7] A. Aljumaiah et al., “The applications of IoT network to enhance farming at Al-Aziziah palm trees farm in Saudi Arabia,” Smart Agric. Technol., vol. 12, p. 101391, Dec. 2025, doi: 10.1016/j.atech.2025.101391.

[8] S. Gupta et al., “Smart agriculture using IoT for automated irrigation, water and energy efficiency,” Smart Agric. Technol., vol. 12, p. 101081, Dec. 2025, doi: 10.1016/j.atech.2025.101081.

[9] S. Bimonte, G. Bellocchi, F. Pinet, G. Chalhoub, M. Sakr, and P. Skrzypczyński, “Data engineering for sustainable agriculture: developments, challenges, and case studies of a novel IoRT architecture,” J. Big Data, vol. 12, no. 1, p. 195, Aug. 2025, doi: 10.1186/s40537-025-01253-z.

[10] Md. A. Awal, A. S. Pio, M. J. Mim, P. K. P. Partha, Md. A. A. Kafi, and S. Farha, “A smart IoT-based hydroponics system for small-scale household in Bangladesh,” Smart Agric. Technol., vol. 12, p. 101163, Dec. 2025, doi: 10.1016/j.atech.2025.101163.

[11] M. S. Rais, S. Sadi, dan M. N. Alfian, "Sistem Monitoring Nutrisi Tanaman Hidroponik Berbasis Internet of Things (IoT)," Jurnal Komputer dan Teknologi, vol. 1, no. 1, hlm. 15-22, Jan. 2023.

[12] P. J. I. Chandran, H. A. Khalil, P. Hashir, and V. S, “Smart technologies in aquaculture: An integrated IoT, AI, and blockchain framework for sustainable growth,” Aquac. Eng., vol. 111, p. 102584, Oct. 2025, doi: 10.1016/j.aquaeng.2025.102584.

[13] N. G. Rezk, A.-F. Attia, M. A. El-Rashidy, A. El-Sayed, and E. E.-D. Hemdan, “An efficient IoT-based crop damage prediction framework in smart agricultural systems,” Sci. Rep., vol. 15, no. 1, p. 27742, July 2025, doi: 10.1038/s41598-025-12921-8.

[14] A. E. Elwakeel, “A smart automatic control and monitoring system for environmental control in poultry houses integrated with earlier warning system,” Sci. Rep., vol. 15, no. 1, p. 31630, Aug. 2025, doi: 10.1038/s41598-025-17074-2.

[15] S. Vijayakumar, V. Murugaiyan, S. Ilakkiya, V. Kumar, R. M. Sundaram, and R. M. Kumar, “Opportunities, challenges, and interventions for agriculture 4.0 adoption,” Discov. Food, vol. 5, no. 1, p. 265, Aug. 2025, doi: 10.1007/s44187-025-00576-3.

[16] A. Turnip, F. R. Pebriansyah, T. Simarmata, P. Sihombing, and E. Joelianto, “Design of smart farming communication and web interface using MQTT and Node.js,” Open Agric., vol. 8, no. 1, p. 20220159, Oct. 2023, doi: 10.1515/opag-2022-0159.

[17] M. Bahari, I. Arpaci, O. Der, F. Akkoyun, and A. Ercetin, “Driving Agricultural Transformation: Unraveling Key Factors Shaping IoT Adoption in Smart Farming with Empirical Insights,” Sustainability, vol. 16, no. 5, p. 2129, Mar. 2024, doi: 10.3390/su16052129.

[18] N. O. Fauziah, B. N. Fitriatin, H. Fakhrurroja, and T. Simarmata, “Enhancing Soil Nutritional Status in Smart Farming: The Role of IoT‐Based Management for Meeting Plant Requirements,” Int. J. Agron., vol. 2024, no. 1, p. 8874325, Jan. 2024, doi: 10.1155/2024/8874325.

[19] S. Palarimath, P. Maran, T. K, C. Balakumar, T. Sujatha, and W. B. N. R, “Exploring Sensor-Based Smart Farming Technologies in the Internet of Things (IoT),” in 2024 International Conference on Computing and Data Science (ICCDS), Chennai, India: IEEE, Apr. 2024, pp. 1–6. doi: 10.1109/ICCDS60734.2024.10560398.

[20] A. Piancharoenwong and Y. F. Badir, “IoT smart farming adoption intention under climate change: The gain and loss perspective,” Technol. Forecast. Soc. Change, vol. 200, p. 123192, Mar. 2024, doi: 10.1016/j.techfore.2023.123192.

Refbacks

  • There are currently no refbacks.