Monitoring Kinerja Virtual Machine pada Lingkungan Google Cloud Platform dengan Notifikasi ke Media Sosial

Irna Widyaningsih, Abdul Haq, Tri Anggoro

Abstract

Abstrak : 

Virtual Machine (VM) merupakan elemen penting dalam cloud computing karena mendukung fleksibilitas dan efisiensi pengelolaan sumber daya. Namun, lonjakan penggunaan VM dapat menurunkan kinerja jika tidak terdeteksi cepat. Penelitian ini mengembangkan sistem monitoring pada Google Cloud Platform (GCP) dengan Grafana yang terintegrasi Telegram untuk peringatan dini otomatis. Prometheus digunakan sebagai pengumpul metrik, sedangkan Grafana menampilkan visualisasi, berfokus pada pemantauan CPU secara real-time di Google Compute Engine (GCE). Notifikasi dikirim melalui Telegram ketika penggunaan CPU melewati ambang batas. Pengujian menunjukkan rata-rata keterlambatan notifikasi hanya 1 detik, kecuali satu anomali 11 detik. Pada skenario Threshold Validation, terjadi satu alert dengan CPU maksimum 37% dan rata-rata 29%, sedangkan Long Hold menghasilkan tiga alert dengan rata-rata 23,3% sesuai konfigurasi interval. Hasil ini membuktikan sistem mampu memberikan notifikasi hampir real-time, menjaga konsistensi, dan mendukung deteksi dini baik pada beban singkat maupun berkepanjangan di infrastruktur GCP.

====================================================

Abstract :

Virtual Machines (VMs) are essential in cloud computing for flexibility and efficient resource management. However, sudden spikes in VM usage can degrade performance if not detected quickly. This study develops a monitoring system on Google Cloud Platform (GCP) using Grafana integrated with Telegram for automated early alerts. Prometheus collects metrics, while Grafana provides visualization, focusing on real-time CPU monitoring in Google Compute Engine (GCE). Alerts are sent via Telegram when CPU usage exceeds a set threshold. Testing shows an average notification delay of 1 second, except for a single 11-second anomaly. In the Threshold Validation scenario, one alert occurred with 37% maximum CPU and 29% average, while the Long Hold scenario produced three alerts with an average of 23.3%, following configured intervals. Results indicate the system delivers near real-time, consistent alerts and supports early detection under both short and sustained load conditions on GCP infrastructure.

Keywords

Cloud Computing; virtual machine; CPU usage; telegram

Full Text:

PDF

References

[1] A. Marchenko and D. Shchemelinin, “Development of an Accessibility Testing System for the Virtual Machine Deployment Service in the Cloud,” Proc. of Telecommunication Universities, vol. 9, no. 3, pp. 68–73, July 2023, doi: 10.31854/1813-324X-2023-9-3-68-73.

[2] Google Cloud, “View and Understand VM Instance Insights,” Compute Engine Documentation. Accessed: Aug. 24, 2025. [Online]. Available: https://cloud.google.com/compute/docs/instances/view-and-understand-vm-insights

[3] K. Fitzgerald, “Radically Reduce Downtime and Data Loss with SaaS-based Disaster Recovery,” CIO. Accessed: Aug. 24, 2025. [Online]. Available: https://www.cio.com/article/410036/radically-reduce-downtime-and-data-loss-with-saas-based-disaster-recovery.html

[4] P. B.C., H. Maddirala, and S. M., “Implementing an Effective Infrastructure Monitoring Solution with Prometheus and Grafana,” IJCA, vol. 186, no. 38, pp. 7–15, Sept. 2024, doi: 10.5120/ijca2024923873.

[5] A. P. Putra, G. Sukadarmika, and D. M. Wiharta, “Model Utilisasi dan Visualisasi Resource Menggunakan Prometheus dan Grafana Untuk Pengelolaan Server di Universitas Udayana,” JTE, vol. 22, no. 2, p. 305, Jan. 2024, doi: 10.24843/MITE.2023.v22i02.P19.

[6] M. Bajpai, “Automating Monitoring and Incident Management with Prometheus, Grafana, and Google Cloud Pub/Sub,” IJSR, vol. 11, no. 1, pp. 1673–1675, Jan. 2022, doi: 10.21275/SR24829151754.

[7] G. Y. Kusuma and U. Y. Oktiawati, “Application Performance Monitoring System Design Using Opentelemetry and Grafana Stack,” Journal of Internet and Software Engineering, vol. 3, no. 1, Art. no. 1, Nov. 2022, doi: 10.22146/jise.v3i1.5000.

[8] Y. Jani, “Unified Monitoring for Microservices: Implementing Prometheus and Grafana for Scalable Solutions,” JAIMLD, vol. 2, no. 1, pp. 848–852, Mar. 2024, doi: 10.51219/JAIMLD/yash-jani/206.

[9] M. D. Elradi, “Prometheus & Grafana: A Metrics-focused Monitoring Stack,” Journal of Computer Allied Intelligence(JCAI, ISSN: 2584-2676), vol. 3, no. 3, pp. 28–39, June 2025, doi: 10.69996/jcai.2025015.

[10] D. Gustian, Y. Fitrisia, W. Novayani, and S. Purwantoro, “Implementasi Automation Deployment pada Google Cloud Compute VM Menggunakan Terraform,” ISI, vol. 8, no. 1, p. 50, June 2023, doi: 10.35314/isi.v8i1.3095.

[11] M. Kondoj, H. Langi, Y. Putung, and V. Lengkong, “Performance Analysis of Cloud Computing Based E-Commerce Server Using PROXMOX Virtual Environment,” in Proc. 5th Int. Conf. Appl. Sci. Technol. Eng. Sci. (iCAST-ES), SCITEPRESS, 2022, pp. 741–745. doi: 10.5220/0011876000003575.

[12] “Manfaat Google Cloud Compute Engine,” Elitery. Accessed: May 02, 2025. [Online]. Available: https://elitery.com/articles/manfaat-google-cloud-compute-engine/

[13] Praveen Borra, “A Survey of Google Cloud Platform (GCP): Features, Services, and Applications,” IJARSCT, vol. 4, no. 3, pp. 191–199, June 2024, doi: 10.48175/IJARSCT-18922.

[14] N. Ramsari and A. Ginanjar, “Implementasi Infrastruktur Server Berbasis Cloud Computing Untuk Web Service Berbasis Teknologi Google Cloud Platform,” in Conference SENATIK STT Adisutjipto Yogyakarta, Mar. 2022, pp. 169–182. doi: 10.28989/senatik.v7i0.472.

[15] Z. Nurrifa’at and M. N. Dasaprawira, “Pengembangan Aplikasi Monitoring PKL dengan Firebase Menggunakan Metode Agile (Studi Kasus: Fakultas Fmikom Unugha),” vol. 8, no. 3, 2024.

[16] P. K. G. Pandian, “Effective Resource Management In Virtualized Environments,” vol. 1, no. 7, 2023.

[17] “Bots: An Introduction for Developers,” Telegram. Accessed: May 02, 2025. [Online]. Available: https://core.telegram.org/bots

[18] F. Fitriansyah, “Penggunaan Telegram sebagai Media Komunikasi dalam Pembelajaran Online,” Jurnal Humaniora, vol. 20, no. 2, pp. 111–117, 2020.

[19] N. C. Dewi, T. Sutabri, and F. Putrawansyah, “Analisis Penyadapan pada Telegram dengan Network Forensic,” JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 2, pp. 183–190, Sept. 2023, doi: 10.26798/jiko.v7i2.789.

Refbacks

  • There are currently no refbacks.