Optimalisasi ANN-MLP dengan GridSearch-CV untuk Klasifikasi Tutupan Lahan Perkotaan Menggunakan Sentinel-2

Mayhendra Daud Sihaloho, Arie Yulfa

Abstract

Klasifikasi tutupan lahan yang akurat menjadi dasar penting bagi perencanaan dan pengelolaan wilayah perkotaan yang berkelanjutan. Penelitian ini mengoptimalkan model Artificial Neural Network Multi-Layer Perceptron (ANN-MLP) dengan GridSearchCV menggunakan citra Sentinel-2 untuk mengklasifikasi tutupan lahan di Kota Padang. Dengan 500 sampel dari lima kelas tutupan lahan dan validasi berbasis citra resolusi tinggi, model yang dioptimasi mencapai akurasi 97% dan nilai Kappa 96,25%. Hasil ini menunjukkan efektivitas optimasi hyperparameter dalam meningkatkan kinerja klasifikasi sekaligus memberikan kontribusi praktis bagi pemerintah daerah, seperti memetakan perkembangan kota, mengidentifikasi alih fungsi lahan, mengarahkan pembangunan sesuai daya dukung lingkungan, dan memperkuat kebijakan tata ruang berbasis data. Pendekatan ini juga dapat direplikasi di daerah lain dengan karakteristik serupa.

Keywords

ANN-MLP; Hyperparameter; GridSearchCV; Klasifikasi Tutupan Lahan; Sentinel-2

Full Text:

PDF

References

Achmad, R. R., & Haris, M. (2023). Hyperparameter Tuning Deep Learning for Imbalanced Data. Tepian, 4(2), 90-101.

Bahrami, H., Chokmani, K., Homayouni, S., Adamchuk, V. I., Albasha, R., Saifuzzaman, M., & Leduc, M. (2025). Machine Learning-Based Alfalfa Height Estimation Using Sentinel-2 Multispectral Imagery. Remote Sensing, 17(10), 1759.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Labertini, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120, 25-36.Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the Accuracy of classification by an Artificial Neural Network. International Journal of Remote Sensing, 18(4), 799–810.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.

Ippolito, P. P. (2022). Hyperparameter Tuning: the art of fine-Tuning Machine and deep Learning models to improve metric results. In Applied data science in tourism: Interdisciplinary approaches, methodologies, and applications (pp. 231-251). Cham: Springer International Publishing.

Jensen, J.R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. 4th Edition, Prentice Hall Press, Upper Saddle River.

Kementerian Lingkungan Hidup dan Kehutanan (KLHK). (2020). Laporan Pemantauan Tutupan Lahan untuk Mengatasi Deforestasi, Degradasi Lahan, dan Perubahan Iklim. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan.

Lee, Y. S., Lee, S., & Jung, H. S. (2020). Mapping forest vertical structure in Gong-Ju, Korea using Sentinel-2 satellite images and artificial neural networks. Applied Sciences, 10(5), 1666.

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International journal of remote sensing, 39(9), 2784-2817.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.

Pemerintah Indonesia. (2007). Undang-Undang Nomor 26 Tahun 2007 tentang Penataan Ruang. Lembaran Negara Republik Indonesia Tahun 2007 Nomor 68. Tambahan Lembaran Negara Republik Indonesia Nomor 4725. Jakarta: Pemerintah Pusat.

Pemerintah Indonesia. (2021). Peraturan Presiden Nomor 108 Tahun 2021 tentang Rencana Tata Ruang Kawasan Strategis Nasional. Lembaran Negara Republik Indonesia Tahun 2021 Nomor 108. Jakarta: Pemerintah Pusat.

Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. E75-10354).

Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEe Access, 9, 4843-4873.

Son, N. T., Chen, C. F., Chang, N. B., Chen, C. R., Chang, L. Y., & Thanh, B. X. (2014). Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 503-510.

Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396.

Yulfa, A., Chandra, D., Ramadhan, R., & Andreas, A. (2022). Geovisualization for information extraction of shoreline changes in Padang city 2000–2020. Geodesy and Cartography, 48(2), 78-84.

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594.

Zhang, T., Su, J., Xu, Z., Luo, Y., & Li, J. (2021). Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier. Applied Sciences, 11(2), 543.

Zhang, Y., Liu, Y., & Wang, X. (2019). Artificial Neural Networks and Their Applications. Computational Intelligence and Neuroscience, 2019, 1-10.

Refbacks

  • There are currently no refbacks.