Sustainable Supercapacitor Electrode: The Role of Performance-Activated Carbon from Nypa Fruticans Shells

Muhammad Iqbal Al Fuady, Ilmi Utari Simatupang, Putri Khoyrul Afifah

Abstract

Abstract. Supercapacitors are energy storage devices widely used in electronics, representing a significant breakthrough in energy storage technology. Known as electric double-layer capacitors (EDLC), supercapacitors are electrochemical energy storage systems with higher power density than batteries. The material used to produce supercapacitor electrodes is waste from Nypa shells. The Nypa shells contain 36.5% cellulose, 21.8% hemicellulose, and 27.3% lignin. The production process uses the pyrolysis method to produce activated carbon, which is then used as supercapacitor electrode material. The SEM (Scanning Electron Microscope) test shows that all samples have different pore cavity structures in activated carbon. The EDX (Energy Dispersive X-ray) test shows that all activated carbon samples contain C, O, Mg, Si, and Ca elements. Based on FTIR (Fourier transform Infrared Spectroscopy) analysis showed that all samples had the same wave pattern and the presence of functional groups in the form of O-H, C=C, C-H, and C ≡ C was detected. The BET test (Brunauer – Emmett – Teller) shows that activated carbon with C-NPS-Ox has a specific surface area, micropore surface area, total pore volume, and average pore diameter values of 989.3 m2/g, 537.1 m2/g, 56.5 cm3/g, and 11.4 nm. The CV (Cyclic Voltammetry) test shows that the C-NPS-Ox sample with a scan rate of 10 mV/s has the highest specific capacitance value, 142.44 F/g.

 

Keywords:

Nypa Palm Shell, Activated Carbon, Electrode, Supercapacitor. 

Full Text:

PDF Untitled

References

[1] L. Luo et al., “High performance supercapacitor electrodes based on B/N Co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment,” Int. J. Hydrogen Energy, vol. 46, no. 63, pp. 31927–31937, 2021, doi: 10.1016/j.ijhydene.2021.06.211.

[2] L. Luo et al., “A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors,” J. Energy Storage, vol. 55, no. PD, p. 105839, 2022, doi: 10.1016/j.est.2022.105839.

[3] A. Nurul Huda, “Pemanfaatan Karbon Aktif dari Sekam Padi Sebagai Elektroda Superkapasitor,” J. Ilmu dan Inov. Fis., vol. 6, no. 2, pp. 102–113, 2022, doi: 10.24198/jiif.v6i2.39639.

[4] T. Ariyanto, I. Prasetyo, and R. Rochmadi, “Pengaruh Struktur Pori Terhadap Kapasitansi Elektroda Superkapasitor Yang Dibuat Dari Karbon Nanopori,” Reaktor, vol. 14, no. 1, 2012, doi: 10.14710/reaktor.14.1.25-32.

[5] O. N. Tetra, “Superkapasitor Berbahan Dasar Karbon Aktif Dan Larutan Ionik Sebagai Elektrolit,” J. Zarah, vol. 6, no. 1, pp. 39–46, 2018, doi: 10.31629/zarah.v6i1.293.

[6] S. Haryati, A. T. Yulhan, and L. Asparia, “Pembuatan Karbon Aktif Dari Kulit Kayu Gelam (Melaleuca leucadendron) yang Berasal Dari Tanjung Api-Api Sumatera Selatan,” J. Tek. Kim. Fak. Tek. Univ. Sriwij., vol. 23, no. 2, pp. 77–86, 2017.

[7] D. R. Gusti, U. Lestari, I. Lestari, and I. L. Tarigan, “Pemanfaatan Limbah Cangkang Buah Nipah Menjadi Masker Gel Peel Off Pada Ibu-Ibu PKK Kelurahan Kampung Laut Tanjung Jabung Timur,” J. Karya Abdi Masy., vol. 4, no. 3, pp. 630–636, 2021, doi: 10.22437/jkam.v4i3.11587.

[8] N. M. Heriyanto, E. Subiandono, and E. Karlina, “POTENSI DAN SEBARAN NIPAH (Nypa fruticans (Thunb.) Wurmb) SEBAGAI SUMBERDAYA PANGAN,” J. Penelit. Hutan dan Konserv. Alam, vol. 8, no. 4, pp. 327–335, 2011, doi: 10.20886/jphka.2011.8.4.327-335.

[9] R. Farma et al., “Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans-based carbon nanofiber for high performance supercapacitors,” J. Energy Storage, vol. 67, no. April, 2023, doi: 10.1016/j.est.2023.107611.

[10] R. Farma, V. Asyana, and I. Apriyani, “Activation of nipah fruit coir-derived carbon material with KOH and NH3 for supercapacitor cell applications,” J. Aceh Phys. Soc., vol. 11, no. 4, pp. 115–120, 2022, doi: 10.24815/jacps.v11i4.28601.

[11] S. U. Muzayanha, C. S. Yudha, L. M. Hasanah, A. Nur, and A. Purwanto, “PENGARUH PEMANASAN PADA PROSES PRETREATMENT UNTUK DAUR ULANG MATERIAL KATODA BATERAI LI-ION Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode,” vol. 4, no. 2, pp. 105–114, 2019.

[12] I. Susanti and N. Widiastuti, “Activation of zeolite-Y templated carbon with KOH to enhance the CO2 adsorption capacity,” Malaysian J. Fundam. Appl. Sci., vol. 15, no. 2, pp. 249–253, 2019, doi: 10.11113/mjfas.v15n2.914.

[13] R. Farma et al., “Jurnal Penyimpanan Energi sulfurNypa buah-buahanserat nano karbon berbasis untuk superkapasitor berkinerja tinggi,” vol. 67, no. April, 2023.

[14] R. D. Asti and A. Putra, “Pengaruh Jenis Larutan Elektrolit Terhadap Sifat Elektrokimia Superkapasitor dari Karbon Aktif Sabut Kelapa Program Studi Kimia , Universitas Negeri Padang,” vol. 8, pp. 19496–19504, 2024.

[15] S. Xin et al., “Chemical structure evolution of char during the pyrolysis of cellulose,” J. Anal. Appl. Pyrolysis, vol. 116, pp. 263–271, 2015, doi: 10.1016/j.jaap.2015.09.002.

[16] A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” J. Power Sources, vol. 157, no. 1, pp. 11–27, 2006, doi: 10.1016/j.jpowsour.2006.02.065.

[17] Y. Hidayat, I. Nurcahyo, F. Rahmawati, K. Dwi N, and W. W. Lestari, “Penambahan Karakter Luas Permukaan Dan Ukuran Pori Arang Sebagai Upaya Diversifikasi Produk Arang Dari Tempurung Kelapa Pada Cv. Solo Button,” J. Kewirausahaan dan Bisnis, vol. 24, no. 14, p. 94, 2019, doi: 10.20961/jkb.v24i14.37724.

[18] A. Imammuddin, S. Soeparman, W. Suprapto, and A. Sonief, “Pengaruh Temperatur Karbonisasi terhadap Mikrostruktur dan Pembentukan Kristal pada Biokarbon Eceng Gondok sebagai Bahan Dasar Absorber Gelombang Elektromagnetik Radar,” J. Rekayasa Mesin, vol. 9, no. 2, pp. 135–141, 2018, doi: 10.21776/ub.jrm.2018.009.02.10.

[19] R. Farma, A. N. I. Lestari, and I. Apriyani, “Supercapacitor cell electrodes derived from Nipah Fruticans fruit coir biomass for energy storage applications using acidic and basic electrolytes,” J. Phys. Conf. Ser., vol. 2049, no. 1, 2021, doi: 10.1088/1742-6596/2049/1/012043.

[20] K. Scott, Electrochemical Principles and Characterization of Bioelectrochemical Systems. Elsevier Ltd., 2016. doi: 10.1016/B978-1-78242-375-1.00002-2.

Refbacks

  • There are currently no refbacks.