Accreditation:
Indexed by:
ISSN:
Tools
Unhealthy fat choices in diets are linked to obesity and other health problems. The food industry faces a challenge to develop low-fat products that maintain desirable textures and functionalities. Food gels, semi-solid materials formed by small molecules or large organic molecules that can hold liquids, offer a promising approach for replacing fat in various food applications like yogurt, ice cream, and cheese. This review discusses recent research on: Types of biopolymers used for fat substitution in gels, including proteins, polysaccharides, and their combinations. The importance of rheological studies in understanding the characteristics of these fat-substituted gels. How manipulating rheological parameters can influence the texture and properties of food products.
Keywords:
Gel, Rheology, Fat, Protein, Polysaccharide
[1] Y. Le et al., “Edible hydrogel with dual network structure for weight management,” Food Res. Int., vol. 190, no. April, 2024, doi: 10.1016/j.foodres.2024.114560.
[2] F. M. Sacks et al., “Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association,” Circulation, vol. 136, no. 3, pp. e1–e23, 2017, doi: 10.1161/CIR.0000000000000510.
[3] I. Stratulat, M. Britten, S. Salmieri, P. Fustier, D. St-Gelais, and M. L. Claude P. Champagne, “Enrichment of cheese with bioactive lipophilic compounds,” J. Funct. Foods, vol. 6, 2014, [Online]. Available: https://doi.org/10.1016/j.jff.2013.11.023
[4] WHO, “Obesity and Overweight.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[5] L. Oliver, E. Scholten, and G. A. van Aken, “Effect of fat hardness on large deformation rheology of emulsion-filled gels,” Food Hydrocoll., vol. 43, pp. 299–310, 2015, doi: 10.1016/j.foodhyd.2014.05.031.
[6] K. Belova et al., “Enrichment of 3D-Printed k-Carrageenan Food Gel with Callus Tissue of Narrow-Leaved Lupin Lupinus angustifolius,” Gels, vol. 9, no. 1, pp. 1–18, 2023, doi: 10.3390/gels9010045.
[7] S. Yong, J. Sim, A. Srv, and J. H. Chiang, “Plant Proteins for Future Foods : A Roadmap,” Foods, vol. 10, no. 1967, pp. 1–31, 2021.
[8] G. A. Van Aken, L. Oliver, and E. Scholten, “Rheological effect of particle clustering in gelled dispersions,” Food Hydrocoll., vol. 48, pp. 102–109, 2015, doi: 10.1016/j.foodhyd.2015.02.001.
[9] M. A. Rao, Rheology of Fluid, Semisolid, and Solid Foods. Food Engineering Series, vol. 3, no. 2. New York, USA, 2014.
[10] A. Nazir, A. Asghar, and A. Aslam Maan, Chapter 13 - Food Gels: Gelling Process and New Applications A2 - Ahmed, J. Elsevier Ltd, 2017. doi: 10.1016/B978-0-08-100431-9/00013-9.
[11] H. Wang, F. Ding, L. Ma, and Y. Zhang, “Edible films from chitosan-gelatin: Physical properties and food packaging application,” Food Biosci., vol. 40, no. January, p. 100871, 2021, doi: 10.1016/j.fbio.2020.100871.
[12] Y. S. Zhang and A. Khademhosseini, “Advances in engineering hydrogels,” Science (80-. )., vol. 356, no. 6337, 2017, doi: 10.1126/science.aaf3627.
[13] S. Zhao, W. J. Malfait, N. Guerrero-Alburquerque, M. M. Koebel, and G. Nyström, “Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications,” Angew. Chemie - Int. Ed., vol. 57, no. 26, pp. 7580–7608, 2018, doi: 10.1002/anie.201709014.
[14] Y. Cao and R. Mezzenga, “Design principles of food gels,” Nat. Food, vol. 1, no. 2, pp. 106–118, 2020, doi: 10.1038/s43016-019-0009-x.
[15] A. Choudhary, T. Jammu, M. Sood, T. Jammu, J. D. Bandral, and T. Jammu, “Food Gels and its Importance,” no. April, 2023.
[16] X. D. Sun et al., “Factors influencing gelation properties of corn germ proteins,” J. Sci. Food Agric., vol. 97, no. 13, pp. 4445–4450, 2017, doi: 10.1002/jsfa.8304.
[17] E. A. Foegeding, C. Gonzalez, D. D. Hamann, and S. Case, “Polyacrylamide gels as elastic models for food gels,” Top. Catal., vol. 8, no. 2, pp. 125–134, 1994, doi: 10.1016/S0268-005X(09)80038-6.
[18] C. D. Munialo, S. R. Euston, and H. H. J. de Jongh, “Protein gels,” Proteins Food Process. Second Ed., pp. 501–521, 2017, doi: 10.1016/B978-0-08-100722-8.00020-6.
[19] D. Liu, Y. Deng, L. Sha, M. Abul Hashem, and S. Gai, “Impact of oral processing on texture attributes and taste perception,” J. Food Sci. Technol., vol. 54, no. 8, pp. 2585–2593, 2017, doi: 10.1007/s13197-017-2661-1.
[20] M. Djabourov, K. Nishinari, and S. B. Ross-Murphy, Mixed gels. 2013. doi: 10.1017/cbo9781139024136.011.
[21] P. Bertsch et al., “Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains,” Langmuir, vol. 35, no. 11, pp. 4117–4124, 2019, doi: 10.1021/acs.langmuir.9b00281.
[22] X. Shen, J. L. Shamshina, P. Berton, G. Gurau, and R. D. Rogers, “Hydrogels based on cellulose and chitin: Fabrication, properties, and applications,” Green Chem., vol. 18, no. 1, pp. 53–75, 2015, doi: 10.1039/c5gc02396c.
[23] Y. Zhang et al., “Rheological properties and microstructure of rennet-induced casein micelle/κ-carrageenan composite gels,” Lwt, vol. 178, no. February, p. 114562, 2023, doi: 10.1016/j.lwt.2023.114562.
[24] S. Yilmaz-Turan, T. Gál, P. Lopez-Sanchez, M. M. Martinez, C. Menzel, and F. Vilaplana, “Modulating temperature and pH during subcritical water extraction tunes the molecular properties of apple pomace pectin as food gels and emulsifiers,” Food Hydrocoll., vol. 145, no. August, 2023, doi: 10.1016/j.foodhyd.2023.109148.
[25] P. Liu et al., “Adhesive and Flame-Retardant Properties of Starch/Ca2+ Gels with Different Amylose Contents,” Molecules, vol. 28, no. 11, 2023, doi: 10.3390/molecules28114543.
[26] W. Xi et al., “Pre-gelatinized high-amylose starch enables easy preparation of flexible and antimicrobial composite films for fresh fruit preservation,” Int. J. Biol. Macromol., vol. 254, no. P2, p. 127938, 2024, doi: 10.1016/j.ijbiomac.2023.127938.
[27] D. Xian et al., “Augmenting corn starch gel printability for architectural 3D modeling for customized food,” Food Hydrocoll., vol. 156, no. May, p. 110294, 2024, doi: 10.1016/j.foodhyd.2024.110294.
[28] I. M. Geremias-Andrade, N. P. B. G. Souki, I. C. F. Moraes, and S. C. Pinho, “Rheology of emulsion-filled gels applied to the development of food materials,” Gels, vol. 2, no. 3, 2016, doi: 10.3390/gels2030022.
[29] J. Yan et al., “Formation, physicochemical properties, and comparison of heat- and enzyme-induced whey protein-gelatin composite hydrogels,” Food Hydrocoll., vol. 137, no. December 2022, p. 108384, 2023, doi: 10.1016/j.foodhyd.2022.108384.
[30] P. Zhang et al., “Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel,” Ultrason. Sonochem., vol. 29, pp. 380–387, 2016, doi: 10.1016/j.ultsonch.2015.10.014.
[31] Y. Xu et al., “Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review,” Foods, vol. 12, no. 14, 2023, doi: 10.3390/foods12142703.
[32] R. Guo et al., “Effect of Na+ and Ca2+ on the texture, structure and microstructure of composite protein gel of mung bean protein and wheat gluten,” Food Res. Int., vol. 172, no. June, p. 113124, 2023, doi: 10.1016/j.foodres.2023.113124.
[33] Y. Xie et al., “Role of dietary fiber and flaxseed oil in altering the physicochemical properties and 3D printability of cod protein composite gel,” J. Food Eng., vol. 327, no. February, p. 111053, 2022, doi: 10.1016/j.jfoodeng.2022.111053.
[34] L. Zheng, J. M. Regenstein, L. Zhou, S. M. Mokhtar, and Z. Wang, “Gel Properties and Structural Characteristics of Composite Gels of Soy Protein Isolate and Silver Carp Protein,” Gels, vol. 9, no. 5, 2023, doi: 10.3390/gels9050420.
[35] Y. R. Zhao et al., “Preparation and characterization of pea protein isolate-egg white protein composite gels,” Food Hydrocoll., vol. 148, no. PA, p. 109464, 2024, doi: 10.1016/j.foodhyd.2023.109464.
[36] D. Lin, W. Lu, A. L. Kelly, L. Zhang, B. Zheng, and S. Miao, “Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry,” Trends Food Sci. Technol., vol. 68, pp. 130–144, 2017, doi: 10.1016/j.tifs.2017.08.006.
[37] X. T. Le, L. E. Rioux, and S. L. Turgeon, “Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels,” Adv. Colloid Interface Sci., vol. 239, pp. 127–135, 2017, doi: 10.1016/j.cis.2016.04.006.
[38] Y. Li, M. Cai, S. Ma, H. Lu, and X. Liu, “Heat-induced gel formation by whey protein isolate-deacetylated konjac glucomannan at varying pH conditions,” Food Hydrocoll., vol. 145, Dec. 2023, doi: 10.1016/j.foodhyd.2023.109076.
[39] F. Laignier et al., “Amorphophallus Konjac: A novel alternative flour on Gluten-free bread,” Foods, vol. 10, no. 6, pp. 1–13, 2021, doi: 10.3390/foods10061206.
[40] S. B. Widjanarko, M. Affandi, and Z. Wahyuli, “A review on konjac glucomannan and hydrolysed konjac glucomannan,” Food Res., vol. 6, no. 5, pp. 425–433, 2022, doi: 10.26656/fr.2017.6(5).920.
[41] Y. Wang et al., “Effects of konjac glucomannan on heat-induced changes of wheat gluten structure,” Food Chem., vol. 229, pp. 409–416, 2017, doi: 10.1016/j.foodchem.2017.02.056.
[42] X. Ran and H. Yang, “Promoted strain-hardening and crystallinity of a soy protein-konjac glucomannan complex gel by konjac glucomannan,” Food Hydrocoll., vol. 133, no. April, p. 107959, 2022, doi: 10.1016/j.foodhyd.2022.107959.
[43] S. Li, Z. Qu, J. Feng, and Y. Chen, “Improved physicochemical and structural properties of wheat gluten with konjac glucomannan,” J. Cereal Sci., vol. 95, no. June, p. 103050, 2020, doi: 10.1016/j.jcs.2020.103050.
[44] J. M. S. Renkema and T. Van Vliet, “Heat-induced gel formation by soy proteins at neutral pH,” J. Agric. Food Chem., vol. 50, no. 6, pp. 1569–1573, 2002, doi: 10.1021/jf010763l.
[45] Z. Fu, J. Chen, S. J. Luo, C. M. Liu, and W. Liu, “Effect of food additives on starch retrogradation: A review,” Starch/Staerke, vol. 67, no. 1–2, pp. 69–78, 2015, doi: 10.1002/star.201300278.
[46] S. Li, G. Chen, X. Shi, C. Ma, and F. Liu, “Comparative Study of Heat-and Enzyme-Induced Emulsion Gels Formed by Gelatin and Whey Protein Isolate: Physical Properties and Formation Mechanism,” Gels, vol. 8, no. 4, 2022, doi: 10.3390/gels8040212.
[47] Y. Liao et al., “Structure, rheology, and functionality of emulsion-filled gels: Effect of various oil body concentrations and interfacial compositions,” Food Chem. X, vol. 16, no. November, p. 100509, 2022, doi: 10.1016/j.fochx.2022.100509.
[48] L. Oliver, L. Wieck, and E. Scholten, “Influence of matrix inhomogeneity on the rheological properties of emulsion-filled gels,” Food Hydrocoll., vol. 52, pp. 116–125, 2016, doi: 10.1016/j.foodhyd.2015.06.003.
[49] J. Kokini and G. Van Aken, “Discussion session on food emulsions and foams,” Food Hydrocoll., vol. 20, no. 4, pp. 438–445, 2006, doi: 10.1016/j.foodhyd.2005.10.003.
[50] E. A. Foegeding, E. L. Bowland, and C. C. Hardin, “Factors that determine the fracture properties and microstructure of globular protein gels,” Top. Catal., vol. 9, no. 4, pp. 237–249, 1995, doi: 10.1016/S0268-005X(09)80254-3.
[51] L. Mao, Y. H. Roos, and S. Miao, “Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels,” J. Agric. Food Chem., vol. 62, no. 47, pp. 11420–11428, 2014, doi: 10.1021/jf503931y.
[52] Y. T. P. Cubides, P. R. Eklund, and E. A. Foegeding, “Casein as a Modifier of Whey Protein Isolate Gel: Sensory Texture and Rheological Properties,” J. Food Sci., vol. 84, no. 12, pp. 3399–3410, 2019, doi: 10.1111/1750-3841.14933.
[53] C.-J. C. and J.-F. H. Cheng-Hsun Jao , Meng-I Kuo, “Influence of Chitosan and Glucono-δ-Lactone on the Gel Properties, Microstructural and Textural Modification of Pea-Based Tofu-Type Product,” 2022.
[54] L. Wang et al., “Cooking-Inspired Versatile Design of an Ultrastrong and Tough Polysaccharide Hydrogel through Programmed Supramolecular Interactions,” Adv. Mater., vol. 31, no. 41, pp. 1–8, 2019, doi: 10.1002/adma.201902381.
[55] S. Choi, Y. Choi, and J. Kim, “Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments,” Adv. Funct. Mater., vol. 29, no. 38, pp. 1–9, 2019, doi: 10.1002/adfm.201904342.
[56] S. Jiang, L. Shang, H. Liang, B. Li, and J. Li, “Preparation of konjac glucomannan/xanthan gum/sodium alginate composite gel by freezing combining moisture regulation,” Food Hydrocoll., vol. 127, no. October 2021, p. 107499, 2022, doi: 10.1016/j.foodhyd.2022.107499.
[57] B. R. Bird, E. W. Stewart, and N. E. Lightfoot, Transport Phenomena Second Edition, vol. 52, no. 3. 1987.
[58] T. F. Tadros, “Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions,” Adv. Colloid Interface Sci., vol. 68, pp. 97–200, 1996, doi: 10.1016/s0001-8686(96)00305-3.
[59] M. Panalytical, “How to Design and Interpret Rheological Tests,” Azo Materials. [Online]. Available: https://www.azom.com/article.aspx?ArticleID=10219