Sintesis Carbon Nanodots dari Molase Menggunakan Metode Pemanasan Terbantukan Gelombang Mikro

Mentik Hulupi, Nida Nabilah, Tiana Hasna Nabilah, Keryanti Keryanti, Fauzi Abdilah

Abstract

ABSTRAK. Carbon nanodots (CNDs) merupakan nanomaterial yang berukuran dibawah 10 nm. CNDs memiliki keunggulan diantaranya yaitu fotostabilitas tinggi, biokompatibilitas baik, toksisitas yang rendah, mudah dibuat, dan ramah lingkungan. Sumber karbon yang digunakan berasal dari molase karena murah dan mudah didapat serta merupakan hasil samping dari pengolahan tebu. Pada penelitian ini digunakan metode pemanasan terbantukan gelombang mikro atau Microwave Assisted Extraction (MAE) yang memberikan hasil suspensi yang homogen, pemanasan efisien, dan waktu yang singkat. Waktu iradiasi mempengaruhi energi gap CNDs dari molase yang dihasilkan. Waktu yang optimum untuk sintesis CNDs dari molase menggunakan metode MAE yaitu selama 3 menit. Efek fluoresensi telah diamati untuk suspensi CNDs yang mengubah warna kuning menjadi warna biru dibawah sinar UV 366 nm. Karakterisasi menggunakan spektrofotometri UV-Vis menunjukan serapan maksimum CNDs dari molase pada panjang gelombang 255 nm dengan energi gap sebesar 4,55 eV.

Kata kunci: Carbon Nanodots, Microwave, Molase


ABSTRACT. Carbon nanodots (CNDs) are nanomaterials with a size below 10 nm. CNDs have advantages such as high photostability, good biocompatibility, low toxicity, easy to manufacture, and environmentally friendly. The carbon source used comes from molasses because it is cheap and easy to obtain and is a by-product of sugarcane processing. In this study, the Microwave Assisted Extraction (MAE) method was used which gave homogeneous suspension results, efficient heating, and short time. The irradiation time affects the energy gap of the CNDs of the molasses produced. The optimum time for the synthesis of CNDs from molasses using the MAE method is 3 minutes. Fluorescence effects have been observed for suspensions of CNDs which turn yellow to blue under 366 nm UV light. Characterization using UV-Vis spectrophotometry showed the maximum absorption of CNDs from molasses at a wavelength of 255 nm with an energy gap of 4.55 eV.

Keywords: Carbon Nanodots, Microwave, Molasses

 

Full Text:

PDF

References

[1] B. Das, P. Dadhich, P. Pal, P.K. Srivas, K. Bankoti, S. Dhara, “Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species,” Journal of Materials Chemistry B. 2 6839–6847 (2014). https://doi.org/10.1039/c4tb01020e.

[2] M. Hulupi, F. Abdilah, S. Turdini, S. Ash-shoffi, Synthesis and Material Characterizations of S-doped Carbon Nanodots from Blackstrap Molasses, 2020.

[3] J.Gao, M. Zhu, H. Huang, Y. Liu, Z. Kang, “Advances, challenges and promises of carbon dots,” Inorganic Chemistry Frontiers. 4 1963–1986 (2017). https://doi.org/10.1039/c7qi00614d.

[4] G.A.M. Hutton, B.C.M. Martindale, E. Reisner, “Carbon dots as photosensitisers for solar-driven catalysis,” Chemical Society Reviews. 46 6111–6123 (2017). https://doi.org/10.1039/c7cs00235a.

[5] F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, S. Yang, “Shining carbon dots: Synthesis and biomedical and optoelectronic applications,” Nano Today. 11 565–586 (2016). https://doi.org/10.1016/j.nantod.2016.08.006.

[6] A. Cayuela, M.L. Soriano, C. Carrillo-Carrión, M. Valcárcel, “Semiconductor and carbon-based fluorescent nanodots: The need for consistency,” Chemical Communications. 52 1311–1326 (2016). https://doi.org/10.1039/c5cc07754k.

[7] T. Yu, H. Wang, C. Guo, Y. Zhai, J. Yang, J. Yuan, “A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties,” Royal Society Open Science. 5 (2018). https://doi.org/10.1098/rsos.180245.

[8] H. Dany Rahmayanti, M. Prasetya Aji dan Sulhadi, Unnes Physics Journal SINTESIS CARBON NANODOTS SULFUR (C-DOTS SULFUR) DENGAN METODE MICROWAVE, 2015. http://journal.unnes.ac.id/sju/index.php/upj.

[9] W. Liu, C. Li, X. Sun, W. Pan, G. Yu, J. Wang, “Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement,” Nanotechnology. 28 (2017). https://doi.org/10.1088/1361-6528/aa900b.

[10] V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, “One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells,” Sensors and Actuators, B: Chemical. 213 434–443 (2015). https://doi.org/10.1016/j.snb.2015.02.104.

[11] H. Fan, M. Zhang, B. Bhandari,C. hui Yang, “Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection,” Trends in Food Science and Technology. 95 86–96 (2020). https://doi.org/10.1016/j.tifs.2019.11.008.

[12] Haryadi, M.R.W. Purnama, A. Wibowo, “C dots derived from waste of biomass and their photocatalytic activities,” Indonesian Journal of Chemistry. 18 594–599 (2018). https://doi.org/10.22146/ijc.26652.

[13] E.K. Sari, D. Sekartaji, A.N.A. Rahmah, W.S.B. Dwandaru, “Nanomaterial Carbon-Dots Berbahan Dasar Daun Sirih (Piper Betle L.) Sebagai Antibakteri Terhadap Bakteri S. Mutans dan E. Coli,” POSITRON. 10 26 (2020). https://doi.org/10.26418/positron.v10i2.41731.

[14] J. Choi, N. Kim, J.W. Oh, F.S. Kim, “Bandgap engineering of nanosized carbon dots through electron-accepting functionalization,” Journal of Industrial and Engineering Chemistry. 65 104–111 (2018). https://doi.org/10.1016/j.jiec.2018.04.018.

Refbacks

  • There are currently no refbacks.