Accreditation:
Indexed by:
ISSN:
Tools
ABSTRAK. Poli asam laktat adalah polimer hidrofobik yang termasuk dalam kelas biomaterial yang bersifat biodegradable. Poli asam laktat berpotensi untuk dijadikan komposit polimer konduktif (conductive polymer composite - CPC) yang dipergunakan sebagai bahan semikonduktor dengan cara mencampurkan grafit kepadanya. Perilaku adsorpsi uap air perlu dipelajari untuk mengetahui stabilitas komposit dan ditunjukkan melalui kurva isotherm adsorpsi uap air. Tujuan dari penelitian ini adalah mempelajari isotherm adsorpsi uap air komposit poli asam laktat/grafit pada berbagai komposisi grafit. Pengamatan terhadap isotherm adsorpsi uap air dilakukan dengan metode gravimetri pada berbagai kondisi kelembaban relatif. Hasil yang diperoleh menunjukkan bahwa kurva isotherm mengikuti tipe II menurut kasifikasi Brunauer, yaitu kurva berbentuk sigmoidal. Semakin tinggi kondisi kelembaban relatif, semakin besar kandungan air kesetimbangan. Peningkatan kandungan air kesetimbangan secara tajam terjadi pada kondisi kelembaban di atas 75%. Semakin tinggi komposisi grafit, semakin besar kandungan uap air kesetimbangan. Data kesetimbangan dicocokkan dengan model kesetimbangan sorpsi uap air yaitu model Guggenhiem-Anderson-deBoer (GAB), model Peleg, dan model Oswin. Model GAB memberikan gambaran isotherm yang terbaik.
Kata kunci: Adsorpsi Uap Air, Kesetimbangan, Komposit, Poli Asam Laktat/Grafit, Pemodelan
ABSTRACT. Poly(lactic acid)/PLA is a hydrophobic polymer that belongs to the class of biodegradable biomaterial. PLA can be used as material in the manufacture of conductive polymer composite (CPC), which is used as a semiconductor material by mixing graphite into it. The water vapor adsorption behavior needs to be studied to determine the stability of the composite. This research aims to investigate the water vapor adsorption isotherm in poly(lactic acid)/graphite composites on various graphite compositions. The gravimetric method carried observations on the water vapor adsorption isotherm at various relative humidity conditions. The results obtained indicate that the isotherm curve follows type II according to the Brunauer classification. The higher the relative humidity, the greater the equilibrium water content. A sharp increase in the equilibrium water content occurs at humidity conditions above 75%. The higher the graphite composition, the greater the equilibrium moisture content. The Guggenhiem-Anderson-deBoer (GAB), Peleg, and Oswin sorption models were used to fit the experimental data. The GAB model best described the isotherms of the composites.
Keywords: Composite, Equilibrium, Modeling, Poly(lactic acid)/Graphite, Water Vapor Adsorption
[1]. M. S. Singhvi, S. S. Zinjarde, and D. V. Gokhale, “Polylactic acid: synthesis and biomedical applications,” J. Appl. Microbiol., vol. 127, pp. 1612–1626, 2019.
[2] R. Hagen, “Polylactic Acid,” in Polymer Science: A Comprehensive Reference, Amsterdam, The Netherlands, Elsevier B.V., 2012, vol. 10, pp. 231–236.
[3]. M. Kaavessina, S. Distantina, E. N. Shohih, H. A. S. Lomi, B. P. Pratiwi, and A. Chafid, "Viscoelastic Behavior and Thermal Stability of Poly(Lactic Acid) Bio-Composite Filled with Micro-Graphite", M Macromol. Symp., 391, 1900140, 2020. DOI: 10.1002/masy.201900140.
[4]. M. S. Lopesa, A. L. Jardini, R. M. Filhoa, "Poly(lactic acid) production for tissue engineering applications', Procedia Engineering, 42, 1402 – 1413 (2012).https://doi.org/10.1016/j.proeng.2012.07.534.
[5]. J. R. Rocca-Smith, J. R., Whyte, O., Brachais, C.-H., Champion, D., Piasente, F., Marcuzzo, E., et al., "Beyond biodegradability of poly(lactic acid): physical and chemical stability in humid environments. ACS Sustain. Chem. Eng. Vol. 5, pp. 2751–2762, 2017. DOI: 10.1021/acssuschemeng.6b03088.
[6]. B. Saberi, Q. V. Vuong, S. Chockchaisawasdee, J. B. Golding, C. J. Scarlett, and C. E. Stathopoulos, “Water sorption isotherm of pea starch edible films and prediction models,” Foods, vol. 5, no. 1, pp. 1–18, 2016, doi:10.3390/foods501000.
[7]. C. Caballero-Cerón, J. A. Guerrero-Beltrán, H. Mújica-Paz, J. A. Torres, and J. Welti-Chanes, “Moisture sorption isotherms of foods: experimental methodology, mathematical analysis, and practical applications,” in Food Engineering Series, pp. 187–214, 2015.DOI 10.1007/978-1-4939-2578-0_15.
[8]. Z. Gu, J. Yang, L. Tao, F. Liu, and Y. Zhang, “Mathematical modelling of water sorption isotherms and thermodynamic properties of wastewater sewage sludge,” Int. J. Low-Carbon Technol., pp. 1–14, 2021.doi:10.1093/ijlct/ctab029.
[9]. R. Fakhfakh, D. Mihoubi, and N. Kechaou, “Moisture sorption isotherms and thermodynamic properties of bovine leather,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 4, pp. 1163–1176, 2018. 10.1007/s00231-017-2223-0.
[10]. M. R. A. Moghaddam, S. M. A. Razavi, Y. Jahani, Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends”, Journal of Polymers and the Environment, 2018.https://doi.org/10.1007/s10924-018-1206-7.
[11]. Pantani, F. De Santis, F. Auriemma, C. De Rosa, R. Di Girolamo, "Effects of water sorption on poly(lactic acid)", Polymer,vol. 99, pp. 130-139, 2016.http://dx.doi.org/10.1016/j.polymer.2016.07.008.
[12]. M. Pannico and P. La Manna, "Sorption of Water Vapor in Poly(L-Lactic Acid): A Time-Resolved FTIR Spectroscapy Investigation", Front. Chem., vol., art.275, 2019. https://doi.org/10.3389/fchem.2019.00275.
[13]. A. Kozbial at. all, "Understanding the intrinsic water wettability of graphite", Carbon, 74, 218-225, 2014. https://doi.org/10.1016/j.carbon.2014.03.025.
[14]. P. P. Lewicki, "The applicability of the GAB model to food water sorption isotherms", Int J Food Sci Tech., vol. 32, pp. 553–55, 1997.