Konduktivitas Listrik Poly(Lactic Acid) dengan Variasi Bahan Isian Karbon: Review

Gabrella Efendy, Indah Dwi Handayani, N Fauziatul Husni, Siti Habibah, Mujtahid Kaavessina

Abstract

Abstrak. Conductive Polymer Nanocomposites (CPC) merupakan material yang banyak digunakan sebagai sensor, sel fotovoltaik, kapasitor, dioda, dan perangkat energi yang sangat mudah meregang. CPC memiliki beberapa sifat unggul, diantaranya konduktivitas elektrik yang tinggi, ringan, tahan korosi, dan memiliki karakteristik mekanis yang bagus. Konduktivitas elektrik pada polimer diperoleh dan diatur dengan menambahkan bahan isian berbasis karbon seperti: Carbon Black (CB), Carbon Nano Tube (CNT), Graphite maupun Graphene. Metode panambahan bahan isian dapat dilakukan dengan Melt blending dan Solvent blending. Metode melt blending memiliki beberapa keunggulan, diantaranya mudah, praktis, murah, serta dapat diaplikasikan pada berbagai bahan. Selain itu, metode melt blending termasuk  ramah lingkungan karena tidak ada pelarut organik. Sedangkan kelebihan metode Solvent Blending adalah campuran yang lebih kuat dikarenakan disperse yang terjadi merata dan lebih baik. Pada review, penulis mengulas tentang sifat elektrik dari CPC berbasis poli asam laktat dan berbagai bahan isian  karbon, yaitu CNT, graphene, dan CB. Hasil studi literatur menunjukkan bahwa konduktivitas elektrik CPC meningkat seiring bertambahnya komposisi bahan isian. Pada metode solvent blending faktor yang berpengaruh adalah komposisi PLA dan filler, suhu operasi, kecepatan pengadukan, waktu pengadukan, dan solvent yang digunakan. Sedangkan metode melt blending faktor yang berpengaruh adalah komposisi PLA dan filler, suhu operasi, kecepatan, dan waktu.

Kata kunci: Poli Asam Laktat, CNT, CB, Graphene, CPC

 

Abstract. Conductive Polymer Nanocomposites (CPC) are materials that are widely used as sensors, photovoltaic cells, capacitors, diodes, and highly flexible energy devices. CPC has several superior properties, including high electrical conductivity, lightweight, corrosion resistance, and good mechanical characteristics. The electrical conductivity of the polymer is obtained and adjusted by adding carbon-based fillers such as: Carbon Black (CB), Carbon Nano Tube (CNT), Graphite, and Graphene. The method of adding fillers can be conducted by Melt blending and Solvent blending. The melt blending method has several advantages, including being easy, practical, inexpensive, and can be applied to various materials. In addition, the melt blending method is environmentally friendly because there is no organic solvent used. Meanwhile, the advantage of the Solvent Blending method is more homogeneous dispersion. In the review, the author reviews the electrical properties of CPC based on poly(lactic acid) and various carbon filling materials, namely CNT, graphene, and CB. The literature study shows that the electrical conductivity of CPC increases as the increase of fillers composition. In the solvent blending method, the main influencing factors are the composition of PLA and filler, operating temperature, stirring speed, stirring time, and solvent used. While the melt blending method, the influencing factors are the composition of PLA and filler, operating temperature, speed, and blending time.

 

Keywords: Poli(lactic acid), CNT, CB, Graphene, CPC

 

Full Text:

View PDF

References

1. Ali, F. et al. (2016) ‘Preparation and characterization of plasticized polylactic acid/starch blend’, Jurnal Teknologi, 78(11–2), pp. 7–12. doi: 10.11113/jt.v78.9936.

2. Bao, C.L., Song, L., Xing,W.Y., Yuan, B.H., Wilkie, C.A., Huang, J.L., Guo, Y.Q., Hu, Y. (2012) ‘Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending’, J. Mater. Chem. 22, 6088–6096.

3. Barrett, J. S. F., Abdala, A. A. and Srienc, F. (2014) ‘Poly(hydroxyalkanoate) elastomers and their graphene nanocomposites’, Macromolecules, 47(12), pp. 3926–3941. doi: 10.1021/ma500022x.

4. Bianchi, O. et al. (2013) ‘Reactive melt blending of PS-POSS hybrid nanocomposites’, Journal of Applied Polymer Science, 128(1), pp. 811–827. doi: 10.1002/app.38196.

5. Boleslaw et al., (2019) ‘Use Of Carbon Black As a Reinforcing Nano-filler In Conductivity-Reversible Elastomer Composite’ , 0142-9418.

6. Buong W.C., et al., (2012) ‘Graphen Nanoplatelest as Novel Reinforcement Filler in Ploy(lactic acid)/ExpoxidizedPalm Oil Green Nanoparticel: Mechanical Properties’, in.J.Mol.Sci.10920-10934, doi;10.3380.

7. Chiu, W.M., Chang, Y.A., Kuo, H.Y., Lin, M.H., Wen, H.C. (2008) ‘A study of carbon nanotubes/biodegradable plastic polylactic acid composites’, J. Appl. Polym. Sci. 108, 3024–3030.

8. Chiu, W.M. Kuo, H.Y. Tsai, P.A. Wu, J.H. (2013) ‘Preparation and properties of poly (lactic acid) nanocomposites filled with functionalized single-walled carbon nanotubes’, J. Polym. Environ. 21, 350–358.

9. da Silva, T. F. et al. (2019) ‘Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites’, Journal of Applied Polymer Science, pp. 1–8. doi: 10.1002/app.47273.

10. Delcourt, C. et al. (2004) ‘Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation’, Polymer Degradation and Stability, 87(3), pp. 535–542. doi: 10.1016/j.polymdegradstab.2004.10.011.

11. Fallahi, H. et al. (2017) ‘Preparation and properties of electrically conductive, flexible and transparent silver nanowire/poly (lactic acid) nanocomposites’, Organic Electronics: physics, materials, applications. Elsevier B.V, 44, pp. 74–84. doi: 10.1016/j.orgel.2017.01.043.

12. Feller, J.-F. et al. (2013) ‘Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing’, Polymer. Elsevier Ltd, 54(25), pp. 6818–6823. doi: 10.1016/j.polymer.2013.10.035.

13. Ganjyal, G. M., Weber, R. and Hanna, M. A. (2007) ‘Laboratory composting of extruded starch acetate and poly lactic acid blended foams’, Bioresource Technology, 98(16), pp. 3176–3179. doi: 10.1016/j.biortech.2006.10.030.

14. Gorrasi, G., Sorrentino, A. (2013) ‘Photo-oxidative stabilization of carbon nanotubes on polylactic acid’, Polym. Degrad. Stab. 98, 963–971.

15. Groot, W. et al. (2010) ‘Chemistry and Production of Lactic Acid ’, Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, pp. 3–18. doi: 10.1002/9780470649848.

16. Hossain, K. M. Z. et al. (2018) ‘Single Solvent-Based Film Casting Method for the Production of Porous Polymer Films’, Macromolecular Materials and Engineering, 303(4), pp. 1–7. doi: 10.1002/mame.201700628.

17. Huang, C., Qian, X. and Yang, R. (2018) ‘Thermal conductivity of polymers and polymer nanocomposites’, Materials Science and Engineering R: Reports. Elsevier, 132(May), pp. 1–22.

18. Iannace, S. et al. (2001) ‘Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions’, Polymer, 42(8), pp. 3799–3807. doi: 10.1016/S0032-3861(00)00744-8.

19. Inagaki, Michio, Yutaka Kaburagi, and Yoshihiro Hishiyama. 2014. 'Thermal management material: graphite', Advanced Engineering Materials, 16: 494-506.

20. Jarkko, T. et al., (2019) ‘Biodegradable multiphase poly(lacticacid)/ biochar/graphite composites for electromagnetic interference shielding’, creativecommons.org/licenses/BY/4.0.

21. Jaseem, S.M., Ali, N.A., (2019) ‘Antistatic packaging of carbon black on plastizers biodegradable polylactic acid nanocomposites’ Journal of Physics. doi : 10.1088/1742-6596/1279/1/012046

22. Kim, H.S., Chae, Y.S., Park, B.H., Yoon, J.S., Kang, M., Jin, H.J. (2008), ‘Thermal and electrical conductivity of poly(L-lactide)/multiwalled carbon nanotube nanocomposites’, Curr. Appl. Phys. 8, 803–806.

23. King, A., et al. (2015) ‘Electroactive Shape Memory Property of a Cu-decorated CNT Dispersed PLA/ESO Nanocomposite’, doi; 10.3390/ ma8095313.

24. Kumar, B., Castro, M. and Feller, J. F. (2012) ‘Poly(lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors’, Sensors and Actuators, B: Chemical. Elsevier B.V., 161(1), pp. 621–628. doi: 10.1016/j.snb.2011.10.077.

25. Lee MW, Wang TY, Tsai JL. J. Compos. Mater. 2016, 27, 3779–3789.

26. Lei, L., Qiu, J.H., Sakai, E. (2012) ‘Preparing conductive poly(lactic acid) (PLA) with poly(methyl methacrylate) (PMMA) functionalized graphene (PFG) by admicellar polymerization’, Chem. Eng. J. 209, 20–27.

27. Leng, J. S. et al. (2008) ‘Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite’, Applied Physics Letters, 92(20). doi: 10.1063/1.2931049.

28. Li, Yichao, Xianrong Huang, Lijian Zeng, Renfu Li, Huafeng Tian, Xuewei Fu, Yu Wang, and Wei-Hong Zhong. 2019. 'A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites', Journal of Materials Science, 54: 1036-76.

29. Li, K. et al. (2013) ‘Organic vapor sensing behaviors of carbon black/poly (lactic acid) conductive biopolymer composite’, Colloid and Polymer Science, 291(12), pp. 2871–2878. doi: 10.1007/s00396-013-3038-2.

30. Mai, F. et al. (2015) ‘Oriented Poly(lactic acid)/Carbon Nanotube Composite Tapes with High Electrical Conductivity and Mechanical Properties’, Macromolecular Materials and Engineering, 300(12), pp. 1257–1267. doi: 10.1002/mame.201500163.

31. Moon, S.I., Jin, F., Lee, C., Tsutsumi, S., Hyon, S.H. (2005) ‘Novel carbon nanotube/poly(L-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity’, Macromol. Symp. 224, 287–295.

32. Nur, .M.A. et al. (2018) ‘Enhancement of Graphite Functionality in Renewable Polymer Composite Properties’, researchgate.net publication 327682638.

33. Nur, .M.A. et al. (2018) ‘Enhancement of Graphite Functionality in Renewable Polymer Composite Properties’, International Journal of Engineering & Technology, 7 (3.14) 215-220.

34. Potschke, P., Andres, T., Villmow, T., Pegel, S., Brunig, H., Kobashi, K., Fischer, D., Haussler, L. (2010) ‘Liquid sensing properties of fibers prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes’, Compos. Sci. Technol. 70, 343–349.

35. Quan, H. et al. (2012) ‘The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes’, Polymer. Elsevier Ltd, 53(20), pp. 4547–4552. doi: 10.1016/j.polymer.2012.07.061.

36. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N. ACS Nano. 2009, 3, 3884–3890.10.1021/nn9010472.

37. Rosli, N. N. et al. (2019) ‘A review of graphene based transparent conducting films for use in solar photovoltaic applications’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 99(August 2018), pp. 83–99. doi: 10.1016/j.rser.2018.09.011.

38. Rui, G. et al. (2013) ‘Poly(Lactid acid) Composites with Poly(Lactid acid)-Modified Carbon Nanotubes’, doi: 10.102/pola26778.

39. Rui, G. et al. (2019) ‘Electrical and Thermal Conductivity of Polylactic Acid (PLA)-Based Biocomposites by Incorporation of Nano-Graphite Fabricated with Fused Deposition Modeling’, pp. 11-549. doi: 10.3390/polym.11030549.

40. Sarafpour, A. et al. (2018) ‘Correlation between isothermal crystallization and morphological/rheological properties of bimodal polyethylene/carbon black systems’, Polymer Crystallization, 1(3), p. e10014. doi: 10.1002/pcr2.10014.

41. Shen, Y.X., Jing, T., Ren,W.J., Zhang, J.W., Jiang, Z.G., Yu, Z.Z., Dasari, A. (2012) ‘Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites’, Compos. Sci. Technol. 72, 1430–1435.

42. Siti, N.K.M., et al. (2021) ‘Evaluation on Structural Properties and Performances of Graphene Incorporated into Chitosan/Poly-Lactic Acid Composites: CS/PLA versus CS/PLA-GO’, doi: 10.1030/polym13111839.

43. Speight, James G. 2015. Handbook of petroleum product analysis (John Wiley & Sons).

44. Tong, X.Z., Song, F., Li, M.Q., Wang, X.L., Chin, I.J., Wang, Y.Z. (2013), ‘Fabrication of graphene/polylactide nanocomposites with improved properties’, Compos. Sci. Technol. 88, 33–38.

45. Villmow, T., Potschke, P., Pegel, S., Haussler, L., Kretzschmar, B. (2008) ‘Influence of twin-screw extrusion conditions on the dispersion of multi-walled carb nanotubes in a poly(lactic acid) matrix’, Polymer 49, 3500–3509.

46. Worsley, M. A. et al. (2000) ‘Reference Guide Agilent Technologies 8753ES Option 011 Network Analyzer Regulatory and Warranty Information’, pp. 14067–14069. doi: 10.1021/ja1072299.

47. Xiangjie Chen, Yunchong Su, David Reay, S. R. (2016) ‘Recent Research Developments in Polymer Heat Exchangerss-A Review’, pp. 1–43.

48. Xingxun, L. et al. (2014) ‘Effect of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid)’, doi: 10.115/org827082.

Refbacks

  • There are currently no refbacks.