Kinetic Study on Hydrothermal Decomposition of Glucose in NaOH Solution With ZnO as Catalyst

Bregas Siswahjono Tatag Sembodo, Addiva Febrioka, Adistya Hilga Pratiwi Aprilia

Abstract

Abstrak. Likuifaksi hidrotermal adalah proses konversi biomassa, di mana struktur biomassa diubah menjadi komponen cair dalam kondisi super kritis dengan suhu tinggi. Dalam penelitian ini, glukosa digunakan sebagai biomassa. Tujuan dari penelitian ini adalah mempelajari kinetika reaksi dan menentukan dekomposisi hidrotermal glukosa dalam larutan NaOH. Percobaan ini menggunakan 10 gram glukosa dan dilarutkan dalam 80 mL larutan NaOH kemudian dimasukkan ke dalam autoklaf. Percobaan dilakukan dengan memvariasikan suhu pemanasan yang dilakukan dalam autoklaf dengan pengaduk magnet. Setelah dipanaskan pada berbagai suhu, autoklaf segera didinginkan. Bahan yang diproses disaring untuk memisahkan padatan yang tidak larut dari fase cair. Residu padat yang telah dipisahkan dari fase cairnya kemudian dikeringkan dalam oven pada suhu 105°C selama 24 jam. Komposisi filtrat dianalisis menggunakan metode GC-MS dan konsentrasi glukosa dianalisis menggunakan metode Lane Eynon. Sebelum analisis GC-MS, filtrat didistilasi pada tekanan atmosfer sampai residu padat tetap. Sampel yang dianalisis merupakan hasil destilasi dengan suhu di atas 100 °C untuk memastikan tidak ada air dan sisa glukosa dalam sampel. Hasil analisis GC-MS sampel produk dari proses dekomposisi hidrotermal memiliki 3 puncak. Puncak pertama menunjukkan senyawa 1,3 Dipalmitin yang memiliki luas 14,74%, puncak kedua menunjukkan senyawa Olealdehida yang memiliki luas 32,35%, dan puncak ketiga menunjukkan senyawa 1,2-Epoxyhexadecane yang memiliki luas 52,91%. Hasil kinetika hidrotermal dekomposisi glukosa pada percobaan ini diperoleh orde reaksi 2 dengan energi aktivasi (Ea) sebesar 15,91 KJ/mol dan faktor pra-eksponensial sebesar 66,12.


Abstract. Hydrothermal liquefaction is a biomass conversion process, where the structure of the biomass is convert into liquid components under super critical conditions with a high temperature. In this study, glucose is used as biomass. The purpose of this study was to study the reaction kinetics and determine the hydrothermal decomposition of glucose in NaOH solution. This experiment used 10 grams of glucose and dissolve it in 80 mL of NaOH solution then put it in an autoclave. Experiments were carried out by varying the heating temperature carried out in an autoclave with a magnetic stirrer. After heating at various temperatures, the autoclave is immediately cooled down. The processed material is filtered to separate insoluble solids from the liquid phase. The solid residue that has been separated from the liquid phase is then dried in an oven at 105°C for 24 hours. The composition of the filtrate was analyzed using the GC-MS method and the glucose concentration was analyzed using the Lane Eynon method. Prior to GC-MS analysis, the filtrate was distilled at atmospheric pressure until a solid residue remained. The sample analyzed is the result of distillation with a temperature above 100°C to ensure that there is no water and residual glucose in the sample. The results of GC-MS analysis of product samples from the hydrothermal decomposition process had 3 peaks. The first peak shows the compound 1,3 Dipalmitin which has an area of 14.74%, the second peak shows the Olealdehyde compound which has an area of 32.35%, and the third peak shows the 1,2-Epoxyhexadecane compound which has an area of 52.91%. The kinetics results in hydrothermal decomposition of glucose in this experiment obtained a reaction order of 2 with an activation energy (Ea) of 15.91 KJ / mol and a pre-exponential factor of 66.12.

 

Full Text:

PDF

References

[1] Anjana, F., Oktaviani, W. R., & Roesyadi, A. (2014). 161923-ID-studi-kinetika-dekomposisi-glukosa-pada.3(2), 122–125.

[2] Duo, J., Zhang, Z., Yao, G., Huo, Z., & Jin, F. (2016). Hydrothermal conversion of glucose into lacticacid with sodium silicate as a base catalyst. Catalysis Today, 263, 112–116.

[3] Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Hydrothermal processing of lignocellulosicmaterials. Holz Als Roh - Und Werkstoff, 57(3), 191–202. https://doi.org/10.1007/s001070050039

[4] Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass.Renewable and Sustainable Energy Reviews, 81(April 2017), 1378–1392.

[5] Hardoyo, Tjahjono, A. E., Primarini, D., Hartono, & Musa. (2017). Kondisi Optimum FermentasiAsam Asetat Menggunakan Acetobacter Aceti B166. J. Sains MIPA, 13(1), 17–20.

[6] JING, Q., & LÜ, X. (2008). Kinetics of Non-catalyzed Decomposition of Glucose in High Temperature Liquid Water. Chinese Journal of Chemical Engineering,16(6),890–894.

[7] Katalis, K., Metode, C. D., & Yang, S. (2018). KARAKTERISASI KATALIS CaO-ZnO DARI METODE SINTESIS YANG. (August), 0–5.

[8] Kupiainen, L., Ahola, J., & Tanskanen, J. (2011). Kinetics of glucose decomposition in formic acid. Chemical Engineering Research and Design, 89(12), 2706–2713.

[9] Marulanda, V. A., Gutierrez, C. D. B., & Alzate, C. A. C. (2019). Thermochemical, biological, biochemical, and hybrid conversion methods of bio-derived molecules into renewable fuels. Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization, 59–81.

[10] Möller, M., Harnisch, F., & Schröder, U. (2013). Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity. RSC Advances, 3(27), 11035–11044.

[11] Nagappan, S., Bhosale, R. R., Nguyen, D. D., Chi, N. T. L., Ponnusamy, V. K., Woong, C. S., & Kumar, G. (2021). Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review. Fuel, 285(August 2020), 119053.

[12] Prasetyo, I., Effendy, M., Mesin, T., & Muhammadiyah, U. (2018). Bioetanol Dari Bahan Baku Singkong Sebagai Bahan. 19(2), 43–54.

[13] Promdej, C., & Matsumura, Y. (2011). Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water. Industrial and Engineering Chemistry Research, 50(14), 8492–8497.

[14] Qiao, Z., Wang, Z., Zhang, C., Yuan, S., Zhu, Y., & Wang, J. (2012). PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE Journal, 59(4), 215–228.

[15] Reliantari, I. F., Evanuarini, H., & Thohari, I. (2017). Pengaruh Konsentrasi NaOH Terhadap pH, Kadar Protein Putih Telur dan Warna Kuning Telur Pidan (The Effect of NaOH Concentration on pH, Egg White Protein Content and Yolk Colour Pidan Egg). Jurnal Ilmu Dan Teknologi Hasil Ternak, 12(2), 69–75.

[16] Sarwono, R., Hariyanto, A., & Puspitadewi, R. (2016). Konversi Limbah Tandan Kosong Kelapa Sawit Menjadi Glukosa Dengan Proses Hidrotermal Tanpa Melalui Proses Pretreatment. Biopropal Industri, 7(2), 63–71.

Refbacks

  • There are currently no refbacks.