Mini-Review Teknologi Carbon Capture and Utilization (CCU) Berbasis Kombinasi Proses Kimia dan Bioproses

Anisa Azzahra Isya, Kezia Rhesa Arman, Joko Wintoko

Abstract

Abstrak. Saat ini kebutuhan energi masih mengandalkan bahan bakar fosil. Di sisi lain, emisi COyang dihasilkan dari pembakaran bahan bakar fosil terus meningkat dan berkontribusi sebagai gas rumah kaca di atmosfer. Pemanasan global menjadi ancaman bagi masa depan kehidupan. Salah satu upaya penanggulangannya adalah dengan mengembangkan teknologi Carbon, Capture, and Utilization (CCU) berbasis proses absorpsi kimia untuk menangkap gas CO dari hasil pembakaran. CO2 yang ditangkap kemudian disimpan dalam bentuk yang stabil sehingga tidak akan terlepas ke atmosfer atau dimanfatkan sebagai bahan baku industri kimia. Kendala utama penerapan teknologi CCU dalam skala besar adalah besarnya biaya yang diperlukan. Sementara, revenue yang dihasilkan relatif rendah. Pada teknologi CCU berbasis proses absorpsi kimia ini, bahan kimia sebagai absorbennya perlu diregenerasi lagi dan CO2-nya dipisahkan untuk disimpan atau dimanfaatkan. Namun regenerasi ini memerlukan biaya yang relatif mahal. Beberapa penelitian mencoba melakukan regenerasi ini dengan bioproses berbasis mikro-alga. Mikro-alga dapat mengambil energi dari cahaya matahari yang melimpah di daerah tropis seperti Indonesia. Di samping itu, beberapa jenis mikro alga mempunyai potensi untuk dimanfaatkan sebagai bahan pangan dan lainnnya. Dalam review ini akan dibahas hasil-hasil penelitian terkini tentang bahan kimia yang sesuai untuk proses absorpsi CO2 dari gas buang, metode regenerasinya mempergunakan mikro-alga, spesies mikro-alga yang dapat dipakai, dan potensi pemanfaatan mikro-alganya.

 

Abstract. Currently, energy needs still rely on fossil fuels. On the other hand, CO2 emissions resulting from burning fossil fuels continue to increase and contribute as a greenhouse gas in the atmosphere. Global warming is a threat to the future of life. One of the countermeasures is by developing Carbon, Capture, and Utilization (CCU) technology based on a chemical absorption process to capture CO2 gas from combustion. The captured CO2 is then stored in a stable form so it will not be released into the atmosphere or used as raw material for the chemical industry. The main obstacle to implementing CCU technology on a large scale is the cost involved. Meanwhile, the revenue generated is relatively low. In CCU technology based on this chemical absorption process, chemicals as absorbents need to be regenerated and the CO2 is separated for storage or use. However, this regeneration requires a relatively high cost. Several studies have attempted to perform this regeneration with micro-algae-based bioprocesses. Micro-algae can take energy from sunlight which is abundant in tropical areas such as Indonesia. In addition, several types of micro algae have the potential to be used as food and other utilizations. This review will discuss the results of recent research on suitable chemicals for the absorption of CO2 from flue gas, its regeneration method using micro-algae, usable micro-algae species, and the potential for micro-algae utilization.

Full Text:

PDF

References

[1] J. Tollefson, “How hot will Earth get by 2100?,” Nature, vol. 580, no. 7804, pp. 443–445, 2020, doi: 10.1038/d41586-020-01125-x.

[2] Liang, Z., Fu, K., Idem, R., Tontiwachwuthikul, P., 2016. Review on current advances future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 24, 278-288

[3] Zhang, K., Liu Z., Wang, Y., Li, Y., Li, Q., Zhang, J., Liu, H., 2014, Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fixed power plant. Energy 66, 556-568

[4] A. Ali, R. Pothu, S. H. Siyal, S. Phulpoto, M. Sajjad, and K. H. Thebo, “Graphene-based membranes for CO2 separation,” Mater. Sci. Energy Technol., vol. 2, no. 1, pp. 83–88, 2019, doi: 10.1016/j.mset.2018.11.002.

[5] C. H. Yu, C. H. Huang, and C. S. Tan, “A review of CO2 capture by absorption and adsorption,” Aerosol Air Qual. Res., vol. 12, no. 5, pp. 745–769, 2012, doi: 10.4209/aaqr.2012.05.0132.

[6] P. Valeh-e-Sheyda and J. Barati, “Mass transfer performance of carbon dioxide absorption in a packed column using monoethanoleamine-Glycerol as a hybrid solvent,” Process Saf. Environ. Prot., vol. 146, pp. 54–68, 2021, doi: 10.1016/j.psep.2020.08.024.

[7] R. Verma and A. Srivastava, “Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae,” Environ. Dev., vol. 27, no. October 2017, pp. 95–106, 2018, doi: 10.1016/j.envdev.2018.07.004.

[8] Sydney, Eduardo B., Alessandra Cristine Novak Sydney, Júlio Cesar de Carvalho, Carlos Ricardo Soccol,2019. Chapter 4 - Potential carbon fixation of industrially important microalgae,67-88. https://doi.org/10.1016/B978-0-444-64192-2.00004-4.

[9] Chaudhary, Ramjee & Dikshit, A. & Tong, Yen. (2018). Carbon-dioxide Biofixation and Phycoremediation of Municipal Wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research. 25. 10.1007/s11356-017-9575-3.

[10] G. Pineda-Camacho, F. de M. Guillén-Jiménez, A. Pérez-Sánchez, L. M. Raymundo-Núñez, and G. Mendoza-Trinidad, “Effect of CO2 on the generation of biomass and lipids by Monoraphidium contortum: A promising microalga for the production of biodiesel,” Bioresour. Technol. Reports, vol. 8, no. July, 2019, doi: 10.1016/j.biteb.2019.100313.

[11] Aghaalipour, E., Aydın Akbulut, Gülen Güllü, (2020) Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems, Volume 163, https://doi.org/10.1016/j.bej.2020.107741.

[12] G. P. Holbrook, Z. Davidson, R. A. Tatara, N. L. Ziemer, K. A. Rosentrater, and W. Scott Grayburn, “Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics,” Appl. Energy, vol. 131, pp. 386–393, 2014, doi: 10.1016/j.apenergy.2014.06.043.

[13] R. Verma, R. Kumar, L. Mehan, and A. Srivastava, “Modified conventional bioreactor for microalgae cultivation,” J. Biosci. Bioeng., vol. 125, no. 2, pp. 224–230, 2018, doi: 10.1016/j.jbiosc.2017.09.003.

[14] Z. Chi, Y. Xie, F. Elloy, Y. Zheng, Y. Hu, and S. Chen, “Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium,” Bioresour. Technol., vol. 133, pp. 513–521, 2013, doi: 10.1016/j.biortech.2013.01.150.

[15] C. Song et al., “Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review,” Int. J. Greenh. Gas Control, vol. 88, no. April, pp. 109–117, 2019, doi: 10.1016/j.ijggc.2019.06.002.

[16] G. M. da Rosa, L. Moraes, B. B. Cardias, M. da R. A. Z. de Souza, and J. A. V. Costa, “Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle,” Bioresour. Technol., vol. 192, pp. 321–327, 2015, doi: 10.1016/j.biortech.2015.05.020.

[17] B. B. Cardias, M. G. de Morais, and J. A. V. Costa, “CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition,” Bioresour. Technol., vol. 267, no. June, pp. 77–83, 2018, doi: 10.1016/j.biortech.2018.07.031.

[18] G. Kim, W. Choi, C. H. Lee, and K. Lee, “Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents,” Biochem. Eng. J., vol. 78, pp. 18–23, 2013, doi: 10.1016/j.bej.2013.02.010.

[19] Chi, Z., Xie, Y., Elloy, F., Zheng, Y., Hu, Y., & Chen, S. (2013). Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium. Bioresource Technology, 133, 513–521. https://doi.org/10.1016/j.biortech.2013.01.150

[20] Bhattacharya, S., Soundarya, R., Mishra, S., 2016. Ammonium bicarbonate as nutrient substitute for improving biomass productivity of Chlorella variabilis. Chem. Eng. Technol. 39, 1738-1742

[21] Z. Tu, L. Liu, W. Lin, Z. Xie, and J. Luo, “Potential of using sodium bicarbonate as external carbon source to cultivate microalga in non-sterile condition,” Bioresour. Technol., vol. 266, no. June, pp. 109–115, 2018, doi: 10.1016/j.biortech.2018.06.076.

[22] Cheng, Q., Xu, L, Cheng, F., Pan, G., Zhou, Q., 2018. Bicarbonate-rich wastewater as a carbon fertilizert for culture of Dictuopsphaerium sp. of a giant pyrenoid. J. Clean. Prod. 202, 439-443.

[23] G. Y. Kim, J. Heo, H. S. Kim, and J. I. Han, “Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency,” Bioresour. Technol., vol. 237, pp. 72–77, 2017, doi: 10.1016/j.biortech.2017.04.009.

[24] Al-Zuhair, S., Alketbi, S., Al-Marzouqi , M., 2016. Regenerating diethanolamine aqueous solution for CO2 absorption using microalgae. Ind BIotechnol. 12, 105-108.

Refbacks

  • There are currently no refbacks.