Pirolisis Sampah Plastik HDPE sebagai Alternatif Pengganti Kerosin dengan Menggunakan Katalis Zeolit Alam

Joko Waluyo, Aji Putra Perkasa, Devaliandra Ramadhana

Abstract

Abstrak. Untuk mengurangi jumlah sampah plastik di Indonesia dapat dilakukan dengan berbagai metode salah satunya adalah dengan pirolisis. Metode pirolisis digunakan untuk mengubah sampah plastik menjadi fuel oil. Maka dari itu dilakukan uji coba penelitian pembuatan fuel oil dengan metode pirolisis dari plastik HDPE yang merupakan jenis plastik yang sering digunakan oleh masyarakat Indonesia Penelitian ini juga menggunakan batu zeolite alam sebagai katalis. Batu zeolite alam sebelumnya dipanaskan pada suhu 400oC selama 4 jam untuk menghilangkan uap air dan kotoran yang ada. Dari percobaan didapatkan 4 sampel dengan kondisi berbeda-beda yaitu sampel A menggunakan katalis dengan suhu pemanasn maksimal 400oC serta besarnya heating rate 2,5oC/menit, sampel B menggunakan katali dengan suhu pemanasan maksimal 350oC serta besarnya heating rate 3,9oC/menit, sampel C tidak menggunakan katalis dengan suhu pemanasannya maksimal 400oC serta besarnya heating rate 3,3oC/menit, sampel D tidak menggunakan katalis dengan suhu pemanasan maksimal 350oC serta besarnya heating rate 3,3oC/menit. Besarnya yield minyak yang dihasilkam adalah 41,25 %, 32,29%, 40,9%, dan 13,9 %. Untuk densitas adalah 0,762 gram/ml, 0,747 gram/ml, 0,769 gram/ml, dan 0,766 gram/ml dan untuk viskositas adalah 0,0071 poise, 0,0084 poise, 0,0104 poise, dan 0,0096 poise.

 

Abstract. Pyrolysis is a method to reduce plastic waste and convert it into liquid fuel. The aim of this research is to study the effect of zeolite catalyst on the pyrolysis of HDPE plastics. Previously, natural zeolite was heated at 400°C for 4 hours to remove moisture and impurities. From the experiment, 4 samples were obtained with different conditions, namely Sample A was the result of pyrolysis with a catalyst at 400°C and a heating rate of 2.5°C/minute, Sample B was the result of pyrolysis with a catalyst at 350°C and a heating rate of 3.9°C/minute. Sample C was the result of pyrolysis without a catalyst at 400°C and the heating rate was 3.3°C/minute, Sample D was the result of pyrolysis without a catalyst at 350°C and the heating rate was 3.3C/minute. The resulting oil yields from sample A to D were 41.25%, 32.29%, 40.9%, and 13.9%, respectively. The density was 0.762 gram/ml, 0.747 gram/ml, 0.769 gram/ml, and 0.766 gram/ml and for viscosity was 0.0071 poise, 0.0084 poise, 0.0104 poise, and 0.0096 poise, respectively. The analysis results show that pyrolysis at 350°C with zeolite catalyst will produce gasoline, whereas without catalyst it will produce kerosene oil.

 

Keywords: pyrolysis, fuel oil, HDPE, zeolite, catalyst

Full Text:

PDF

References

[1] S. Puspita, "Indonesia Penyumbang Sampah Plastik Terbesar Kedua di Dunia," 19 8 2018. [Online]. Available: https://megapolitan.kompas.com/read/2018/08/19/21151811/indonesia-penyumbang-sampah-plastik-terbesar-kedua-di-dunia. [Accessed 23 7 2019]. [

2] S. D. A. Sharudin, A. F. Abnisa, W. M. A. W. Daud and M. K. Aroua, "A Review on Pyrolysis of Plastic Wastes," Energy Conversion and Management, vol. 115, pp. 308-326, 2016.

[3] Pertamina, "Pertamina Industrial Fuel Marketing," 2019. [Online]. Available: https://www.pertamina.com/industrialfuel/id/products-services/fuel-product/. [Accessed Agustus 2019].

[4] O. Cepeliogullar and A. E. Putun, "Utilization of Two Different Types of Plastic Wastes from Daily and Industrial Life," ICOEST Cappadocia, pp. 1-13, 2013.

[5] M. Sarker, A. Kabir, M. M. Rashid, M. Molla and M. A. Din, "Waste Polyetylene Terephthalate (PETE-1) Conversion into Liquid Fuel," Journal of Fundamental Renewable Energy Application, no. 1, pp. 1-5, 2011.

[6] Ahmad I, Khan MI, Ishaq M, Tariq R and Gul K, "Pyrolysis Study of Polypropylene and Polyethylene into Premium Oil Products," Int J Green Energy, vol. 12, no. 71, p. 663, 2014.

[7] E. Manickaraja and S. Tamilkolundu, "Catalytic Degradation of Waste PVC into Liquid fuel using BaCO3 as Catalyst and its Blending Properties with Diesel Fuel," Discover, vol. 23, pp. 74-78, 2014.

[8] S. B. Desai and C. K. Galage, "Producton and Analysis of Pyrolysis Oil from Waste Palstic in Kolhapur City," Int J Eng Res Gen Sci, no. 3, pp. 590-595, 2015.

[9] F. Pinto, P. Costa, I. Gulyurtlu and I. Cabrrita, "Effect of Plastic Waste Composition on Product Yield.," J Analytical and Applied Pyrolysis, no. 51, pp. 39-55, 1998.

[10] M. Blazco, "Composition of Liquid Fuels Derived from the Pyrolysis of Plastics," in Feedstock Recycling and Pyrolysis of Waste Palstics : Converting Waste Plastics into diesel and Other Fuels, J. Scheirs and W. Kaminsky, Eds., Hungary, John Wiley & Sons, 2006, pp. 315-342.

[11] A. W. Wibowo, B. T. T. Lusmono and W. T. Efendi, "Aplikasi Bentonit Boyolali untuk Meningkatkan Perolehan Fraksi Bensin pada Pembuatan Bahan Bakar dari Sampah Palstik dengan Proses Dekomposisi Katalis," in International Conference on Electric Vehicular Technology, 2015.

[12] R. Miranda, Jin Y and Vasile C, "Vacuum Pyrolysis of Polyethylene," Applied Pyrolysis, no. 64, 2001.

[13] J. A. Onwudili, N. Insura and P. T. Williams, "Composition of Products from The Pyrolysis of Polyethylene and Polystyrene in a Closed Batch Reactor : Effects of Temperature and Residence Time," Annalytical adn Applied Pyrolysis, no. 86, pp. 293-303, 2009.

[14] Bagri R and Williams PT, "Catalytic Pyrolysis of Polyethylene," Analytical and Applied Pyrolysis, no. 63, pp. 29-41, 2001.

Refbacks

  • There are currently no refbacks.