Preparation and Flocculation Performance of Polyacrylamide Grafted Banana Stem Cellulose: Effect of Acrylamide and Ammonium Peroxydisulfate

Sperisa Distantina, Imanuel Daniel Nainggolan, Yosea Ido Fernando, Mujtahid Kaavessina

Abstract

ABSTRACT. Banana stem was identified as an attractive source of cellulose and a promising raw material for developing friendly bioflocculant hydrogels in water treatment. Polyacrylamide grafted banana stem cellulose (BS-g-PAA) was synthesized for flocculation application. The objective of this study was to investigate the effect of ammonium peroxydisulfate (APS) and acrylamide (AA) amount on the grafting efficiency and flocculation performance of obtained BS-g-PAA. In this study, 1 g banana stems flour was mixed in distilled water, followed by the addition of AA at different weight (10, 15, and 20 g) and APS at various weight (0.1, 0.15, and 0.2 g). The mixture was grafted using microwave irradiation at 540 W for 60 s per cycle, repeated for three cycles (total 180 s). The sample was then dried using an oven until constant weight and ground to obtain BS-g-PAA powder. The results of FTIR showed that the successful grafting of acrylamide onto the cellulose backbone. The grafting percentage increased with the increasing of AA amount, from 1,008% at 10 g AA to 2,098% at 20 g AA. Ammonium peroxydisulfate from 0.1 g to 0.2 g increased grafting percentage from 980% to 1,008%. BS-g-PAA hydrogel prepared by 1 g banana stem, 0.2 g APS, and 10 g AA produced the most effective turbidity reduction by reducing the turbidity value from 53.3 NTU of kaolin suspension to a final value of 15.29 NTU after 80 s flocculation test. These results demonstrated that hydrogels derived from banana stems may have promising potential as sustainable bioflocculants for wastewater treatment applications.

Keywords:

Banana stem, Ammonium peroxydisulfate, Acrylamide, Bioflocculant, Microwave grafting

Full Text:

PDF

References

[1] F. Renault, B. Sancey, P.-M. Badot, and G. Crini, “Chitosan for coagulation/flocculation processes – An eco-friendly approach”, Eur. Polym. J., vol. 45, no. 5, pp. 1337–1348, May 2009, doi: 10.1016/j.eurpolymj.2008.12.027.

[2] S. B. Kurniawan, S. R.S. Abdullah, M. F. Imron, N.S.M. Said, N. I. Ismail, H. A. Hasan, A. R. Othman, I. F. Purwanti, “Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery”, Int. J. Environ. Res. Public Health, vol. 17, no. 24, p. 9312, Dec. 2020, doi: 10.3390/ijerph17249312.

[3] Y. Nurhaliza, F. Nurulhaq, S. M. Yudhanto, and V. Suryanti, “Edible film from microcrystalline cellulose (MCC) of waste banana (Musa paradisiaca) stem and chitosan”, J. Phy.s Conf. Ser., vol. 2190, no. 1, p. 012027, Mar. 2022, doi: 10.1088/1742-6596/2190/1/012027.

[4] T. S. Erawan, R. A. Hidayat, and J. Iskandar, “Etnobotanical study on banana in Karangwangi Village, Cianjur District, West Java”, Jurnal Biodjati, vol. 4, no. 1, pp. 112–125, May 2019, doi: 10.15575/biodjati.v4i1.2954.

[5] F. L. Shimizu, P. Q. Monteiro, P. H. C. Ghiraldi, R. B. Melati, F. C. Pagnocca, W. Souza, C. S. Anna, M. Brienzo, “Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem”, Ind. Crops. Prod., vol. 115, pp. 62–68, May 2018, doi: 10.1016/j.indcrop.2018.02.024.

[6] Radhika and L. Chopra, “Cellulose-based hydrogel in water purification”, Advances in Science, Technology & Innovation Smart Materials and Manufacturing Technologies for Sustainable Development, 2024, pp. 157–163. doi: 10.1007/978-3-031-63909-8_22.

[7] N. A. Aslin, I. Raya, H. Natsir, and P. Budi, “Synthesis of hydrogels from banana stem cellulose (Musa paradisiaca L.) with chitosan and ethylenediaminetetraacetic acid”, Egypt J. Chem., vol. 66, no. 9, pp. 11–19, 2023, doi: 10.21608/ejchem.2023.149022.6451.

[8] M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Magaña, and E. Bucio, “Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials”, Gels, vol. 7, no. 4, p. 182, 2021, doi: 10.3390/gels7040182.

[9] J. Kushwaha and R. Singh, “Cellulose hydrogel and its derivatives: A review of application in heavy metal adsorption”, Inorg. Chem. Commun., vol. 152, p. 110721, Jun. 2023, doi: 10.1016/j.inoche.2023.110721.

[10] E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review”, J. Adv. Res., vol. 6, no. 2, pp. 105–121, 2015, doi: 10.1016/j.jare.2013.07.006..

[11] A. S. Hoffman, “Hydrogels for biomedical applications”, Adv. Drug Deliv. Rev,. vol. 64, pp. 18–23, 2012, doi: 10.1016/j.addr.2012.09.010.

[12] H. A. A. El‐Rehim, E. A. Hegazy, and H. L. A. El‐Mohdy, “Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance”, J. Appl. Polym. Sc.i, vol. 93, no. 3, pp. 1360–1371, 2004, doi: 10.1002/app.20571.

[13] V. Singh, P. Kumar, and R. Sanghi, “Use of microwave irradiation in the grafting modification of the polysaccharides – A review”, Prog. Polym. Sci., vol. 37, no. 2, pp. 340–364, Feb. 2012, doi: 10.1016/j.progpolymsci.2011.07.005.

[14] N. A. Yusoff, N. M. Shahib, N. A. Zainol, K. S. A. Sohaimi, N. M. Rohaizad, E. A. Wikurendra, A. Andini, A. Syafiuddin, “Microwave-assisted synthesis and characterization of polyacrylamide grafted cellulose derived from waste newspaper for surface water treatment”, Desal. Water Treat., vol. 259, pp. 90–97, 2022, doi: 10.5004/dwt.2022.28464.

[15] G. P. Aji, M. N. S. Arifandi, S. Distantina, and M. Kaavessina, “Microwave-assisted synthesis of corn husk-based hydrogels grafted with acrylamide”, ALCHEMY Jurnal Penelitian Kimia, vol. 20, no. 2, p. 198, 2024, doi: 10.20961/alchemy.20.2.79274.198-205.

[16] G. Sen, S. Mishra, G. U. Rani, P. Rani, and R. Prasad, “Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculant”, Int. J. Biol. Macromol., vol. 50, no. 2, pp. 369–375, 2012, doi: 10.1016/j.ijbiomac.2011.12.014.

[17] S. Distantina, G. S. Anggreini, F. A. Al Kamal, M. Kaavessina, and F. Fadilah, “Effect of potassium peroxodisulphate and microwave power on hydrogel character based on banana peel waste using microwave grafting method”, Equilibrium Journal of Chemical Engineering, vol. 7, no. 1, p. 1, Feb. 2023, doi: 10.20961/equilibrium.v7i1.67919.

[18] S. P. Phalle, P. B. Choudhari, S. P. Choudhari, D. A. Bhagwat, A. M. Kadam, and V. L. Gaikwad, “Microwave-assisted grafting of acrylamide on a natural xylan gum for controlled drug delivery”, Polymer Bulletin, vol. 81, no. 3, pp. 2583–2600, Feb. 2024, doi: 10.1007/s00289-023-04853-y.

[19] A. Patel, “Synthesis of acrylamide grafted xanthan gum by microwave assisted method: FTIR characteristic and acute oral toxicity study”, Pharma Science Monitor 7(1), 2016, 129–145. https://www.researchgate.net/publication/372884462

[20] S. Mishra, G. Usha Rani, and G. Sen, “Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose”, Carbohydr. Polym., vol. 87, no. 3, pp. 2255–2262, 2012, doi: 10.1016/j.carbpol.2011.10.057.

[21] S. Singh, S. Bhardwaj, P. Tiwari, K. Dev, K. Ghosh, and P. K. Maji, “Recent advances in cellulose nanocrystals-based sensors: a review”, Mater. Adv., vol. 5, no. 7, pp. 2622–2654, 2024, doi: 10.1039/D3MA00601H.

[22] S. Amin, S. Damayanti, and S. Ibrahim, “Synthesis and characterization molecularly imprinted polymers for analysis of dimethylamylamine using acrylamide as monomer functional”, Jurnal Kefarmasian Indonesia, pp. 76–84, 2018, doi: 10.22435/jki.v8i2.330.

[23] A. Sand and A. Vyas, “Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization”, Journal of Polymer Research, vol. 27, no. 2, p. 43, 2020, doi: 10.1007/s10965-019-1951-x.

[24] J. Liang, Y. Yan, L. Chen, J. Wu, Y. Li, Z. Zhao, L. Li, “Synthesis of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge as a fast absorbent composite and its application in coral sand soil”, Int. J. Biol. Macromol., vol. 242, p. 124965, 2023, doi: 10.1016/j.ijbiomac.2023.124965.

[25] V. Vijan, S. Kaity, S. Biswas, J. Isaac, and A. Ghosh, “Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery”, Carbohydr. Polym., vol. 90, no. 1, pp. 496–506, 2012, doi: 10.1016/j.carbpol.2012.05.071.

[26] S. Mishra, G. Sen, G. U. Rani, and S. Sinha, “Microwave assisted synthesis of polyacrylamide grafted agar (Ag-g-PAM) and its application as flocculant for wastewater treatment”, Int. J. Biol. Macromol., vol. 49, no. 4, pp. 591–598, 2011, doi: 10.1016/j.ijbiomac.2011.06.015.

[27] S. S. Ngema, A. K. Basson, and T. S. Maliehe, “Synthesis, characterization and application of polyacrylamide grafted bioflocculan”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 115, p. 102821, 2020, doi: 10.1016/j.pce.2019.102821.

[28] H. Zhu, Y. Zhang, X. Yang, L. Shao, X. Zhang, and J. Yao, “Polyacrylamide grafted cellulose as an eco-friendly flocculant: Key factors optimization of flocculation to surfactant effluent”, Carbohydr. Polym., vol. 135, pp. 145–152, 2016, doi: 10.1016/j.carbpol.2015.08.049.

[29] X. Yu, X. Huang, C. Bai, and X. Xiong, “Modification of microcrystalline cellulose with acrylamide under microwave irradiation and its application as flocculant”, Environmental Science and Pollution Research, vol. 26, no. 32, pp. 32859–32865, 2019, doi: 10.1007/s11356-019-06317-1.

[30] D. Sasmal, R. P. Singh, and T. Tripathy, “Synthesis and flocculation characteristics of a novel biodegradable flocculating agent amylopectin-g-poly(acrylamide-co-N-methylacrylamide)”, Colloids Surf. A Physicochem. Eng. Asp., vol. 482, pp. 575–584, 2015, doi: 10.1016/j.colsurfa.2015.07.017.

Refbacks

  • There are currently no refbacks.