The impact of Inject Chemical Neutralization toward the PH change in the Reject water management on the Raw water treatment facilities in Petrochemical Industries

Rachmadi Tutuka, Ferry Ikhsandy, Rohiman Ahmad Zulkipli, Alamul Iman, Rizky Ibnufaatih Arvianto

Abstract

The water waste management in Petrochemical Industry becomes the significant challenge in maintain environmental quality—particularly in regulating pH levels in accordance with the standards set by Indonesia’s Ministry of Environment and Forestry Regulation No. 5 of 2014—chemical injection is widely employed. This method involves the addition of acidic or alkaline agents to neutralize the pH of reject water. This study evaluates the effect of varying chemical injection dosages to determine the optimal dose required to achieve a pH range of 6 to 9. The findings demonstrate a direct relationship between the increase in chemical injection dosage and changes in pH levels, where higher dosages consistently raised the pH, stabilizing at an average value of 8.2. Over a one-month monitoring period, the optimal dosage was identified as 0.085 m³, resulting in an average pH of 6.47. Excessive dosing is not only less effective but also led to increase operational costs, reaching up to IDR 872,235. Thus, optimizing chemical injection dosage is critical—not only for ensuring compliance with environmental pH standards but also for minimizing chemical consumption and reducing operational expenditures.

Full Text:

PDF

References

M.D. Alamsyah, R. Asyfiradayati, “Pengetahuan Kualitas Air Dengan Pengelolaan Air Minum,” J. Ners. 8 405–410 (2024).

Kementerian Lingkungan Hidup, Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014, 2014. https://doi.org/10.1177/003231870005200207.

P. Sakthi Sridevi, D. Prema, “Control and Management of Waste Water by pH Neutralization Process,” Int. J. Eng. Res. Technol. 5 1–5 (2017).

B.S.D. Dewanti, T.F. Prastiwi, A.T. Sutan Haji, “Pengolahan Limbah Cair Batik Menggunakan Kombinasi Metode Netralisasi Dan Elektrokoagulasi,” J. Rekayasa Dan Manaj. Agroindustri. 7 358 (2019). https://doi.org/10.24843/jrma.2019.v07.i03.p03.

H. Ahsanti, S. Slamet Mulyati, B. Yulianto, “Pengaruh Variasi Berat Resin Ion Exchange Terhadap Penurunan pH Air Limbah Produksi di PT. XYZ,” J. Kesehat. Siliwangi. 2 427–430 (2021). https://doi.org/10.34011/jks.v2i2.704.

F. Tatangindatu, O. Kalesaran, R. Rompas, “Studi Parameter Fisika Kimia Air pada Areal Budidaya Ikan di Danau Tondano, Desa Paleloan, Kabupaten Minahasa,” E-Journal Budid. Perair. 1 8–19 (2013). https://doi.org/10.35800/bdp.1.2.2013.1911.

C. Andrade, “A Student’s Guide to the Classification and Operationalization of Variables in the Conceptualization and Design of a Clinical Study: Part 1,” Indian J. Psychol. Med. 43 177–179 (2021). https://doi.org/10.1177/0253717621994334.

Hariyadi, M. Kamil, P. Ananda, “Sistem Pengecekan pH Air Otomatis Menggunakan Sensor pH Probe Berbasis Arduino Pada Sumur Bor,” Rang Tek. J. 3 340–346 (2020). http://dx.doi.org/10.1016/j.biochi.2015.03.025.

Irvan, B. Trisakti, N. Azka, “Pengaruh Laju Pengadukan Terhadap Stabilitas Digester Anaerobik Satu Tahap pada Pembentukan Biogas dari Limbah Cair Pabrik Kelapa Sawit Menggunakan Lab,” J. Tek. Kim. USU. 9 16–20 (2020).

Rachmawati, B. Iswanto, Winarni, “Pengaruh pH Pada Proses Koagulasi dengan Koagulan Aluminum Sulfat dan Ferri Klorida,” Indones. J. Urban Environ. Technol. 5 40 (2009). https://doi.org/10.25105/urbanenvirotech.v5i2.676.

N.N.R. Anisa, Sodium Hipoklorit dari Sodium Hidroksida dan Gas Klorin dengan Proses Klorinasi Kapasitas Produksi 50.000 Ton/Tahun, 2021.

Refbacks

  • There are currently no refbacks.