Comparative Study of the Nutritional Value, Phytochemicals, and Sensory Quality of Flakes Prepared Using Elicited and Non-Elicited Cowpea Sprout Flours

Setyaningrum Ariviani, Galih Poetri Nastiti, Nurul Hidayati Sholihin, Gusti Fauza, Siswanti Siswanti

Abstract

Germination without and with elicitation using 50 mM NaCl or 250 ppm Na-alginate generated cowpea sprout flours with the levels of protein, total phenolic compounds (TPC), total flavonoid compounds (TFC), radical scavenging activity (RSA), and ferric reducing antioxidant power (FRAP), as well as functional properties that significantly higher than that of cowpea seed flour. Most cereal flakes lack protein content and health-promoting compounds. This study aims to investigate the potential for developing NaCl-elicited, Na-alginate-elicited, and non-elicited cowpea sprout flours for flakes production through a comparative study on the nutritional value (proximate, dietary fibers), phytochemicals (TPC, RSA, FRAP), and sensory quality. Oat-based commercial flake was used as a comparator. The flakes formulated using elicited cowpea sprout flours exhibited significantly lower fat and carbohydrate contents and higher levels of protein, soluble, insoluble, and total dietary fibers than those prepared using non-elicited cowpea sprout flour. The cowpea-based flakes showed more elevated carbohydrate, total, soluble, and insoluble dietary fiber levels and significantly lower fat levels than oat-based commercial flakes. The flakes designed using Na-alginate-elicited cowpea sprout flour have the highest TPC, RSA, and FRAP values. Compared to the commercial ones, flakes prepared with elicited cowpea sprout flours produce better aroma, texture, and overall qualities. These results have significant implications for developing legume-based flakes with lower fat, higher levels of protein, dietary fibers, and phytochemicals, and good sensory quality.

Keywords

elicitation; health-promoting compounds; NaCl; Na-alginate; radical scavenging activities

Full Text:

PDF

References

Abebe, B. K. (2022). The dietary use of pigeon pea for human and animal diets. Scientific World Journal, 2022(1), 4873008. https://doi.org/10.1155/2022/4873008

Abebe, B. K., & Alemayehu, M. T. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383. https://doi.org/10.1016/j.jafr.2022.100383

Abogunrin, S. O., & Ujiroghene, O. J. (2022). Formulation and quality evaluation of breakfast flakes produced from blends of maize (Zea mays) and quinoa (Chenopodium quinoa Willd) flour. Asian Food Science Journal, 21(8), 38–51. https://doi.org/10.9734/afsj/2022/v21i830444

Annex of Regulation. (2006). The regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Official Journal of European Union, 404, 9–25. Retrieved from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:404:0009:0025:En:PDF

AOAC. (2005). Official Method of Analysis of AOAC International, 18th ed. AOAC International. Retrieved from https://www.researchgate.net/publication/292783651_AOAC_2005

Ariviani, S., Hapsari, K. C., Fauza, G., Ishartani, D., Atmaka, W., Khasanah, L. U., & Siswanti. (2021a). Evaluation of total phenolic content, antioxidant activity, germination power, and yield of pigeon pea (Cajanus cajan) sprouts elicited using various Naalginate levels with different elicitation duration. Food Research, 5(Suppl.2), 91–97. https://doi.org/10.26656/fr.2017.5(S2).005

Ariviani, S., Lainuna, N., & Fauza, G. (2020b). The potential of NaCl elicitation on improving antioxidant capacity and functional properties of sprouted pigeon pea (Cajanus cajan) flour. AIP Conference Proceedings, 2219, 070005. https://doi.org/10.1063/5.0003642

Ariviani, S., & Mudalifah, I. (2023). The improvement of nutrition quality, antioxidant capacity, and functional properties of cowpea (Vigna unguiculata) sprout flour through NaCl and Naalginate elicitation. Food Research, 7(4), 227–234. https://doi.org/10.26656/fr.2017.7(4).055

Ariviani, S., Mudalifah, I., Ishartani, D., & Fauza, G. (2020a). Investigation on antioxidant activity, protein, and whiteness degree of elicited cowpea sprouts flour prepared with various drying technique. AIP Conference Proceedings, 2219, 070003. https://doi.org/10.1063/5.0003640

Ariviani, S., & Nastiti, G. P. (2024). Investigation of the sensory quality, nutritional value and antioxidant capacity of flakes prepared using various pigeon pea-based flours. Food Research, 8(Supp. 2), 30–37. https://doi.org/10.26656/fr.2017.8(S2).18

Ariviani, S., Sasmita, L. C., Khusafa’ah, L. N., Ratnaningsih, N., & Yulviatun, A. (2022). Na-alginate elicitation as an alternative strategy to improve the antidiabetic potential of pigeon pea (Cajanus cajan) flour. Food Research, 6(4), 246–253. https://doi.org/10.26656/fr.2017.6(4).843

Ariviani, S., Sholihin, N. H., & Nastiti, G. P. (2021b). Development of cowpea (Vigna unguiculata) sprouts as a functional cereal high in dietary fiber and antioxidant potential. Jurnal Teknologi Hasil Pertanian, 14(2), 84–95. https://doi.org/10.20961/jthp.v14i2.53422

Awika, J. M., & Duodu, K. G. (2017). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties : A review. Journal of Functional Foods, 38, 686–697. https://doi.org/10.1016/j.jff.2016.12.002

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2020). The health benefits of dietary fibre. Nutrients, 12(10), 3209. https://doi.org/10.3390/nu12103209

Benítez, V., Cantera, S., Aguilera, Y., Mollá, E., Esteban, R. M., Díaz, M. F., & Martín-Cabrejas, M. A. (2013). Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 50(1), 64–69. https://doi.org/10.1016/j.foodres.2012.09.044

Bepary, R. H., Wadikar, D. D., & Semwal, A. D. (2022). Optimization of temperate extrusion-assisted flaking process conditions for the production of ricebean (Vigna umbellata) flakes. Innovative Food Science and Emerging Technologies, 81, 103124. https://doi.org/10.1016/j.ifset.2022.103124

Berker, K. I., Güçlü, K., Tor, İ., & Apak, R. (2007). Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 72(3), 1157–1165. https://doi.org/10.1016/j.talanta.2007.01.019

David, S., Blanchard, C. L., John, A., & Farahnaky, A. (2025). Desi chickpea flaking: Impact of processing parameters on flake quality. Journal of Food Engineering, 386, 112256. https://doi.org/10.1016/j.jfoodeng.2024.112256

Devi, A., Eyles, H., Rayner, M., Mhurchu, C. N., Swinburn, B., Lonsdale-Cooper, E., & Vandevijvere, S. (2014). Nutritional quality, labelling and promotion of breakfast cereals on the New Zealand market. Appetite, 81, 253–260. https://doi.org/10.1016/j.appet.2014.06.019

Fasoyiro, S. B., Akande, S. R., Arowora, K. A., Sodeko, O. O., Sulaiman, P. O., Olapade, C. O., & Odiri, C. E. (2010). Physico-chemical and sensory properties of pigeon pea (Cajanus cajan) flours. African Journal of Food Science, 4(3), 120–126. https://doi.org/10.5897/AJFS.9000225

Fasuan, T. O., Asadu, K. C., Anyiam, C. C., Ojokoh, L. O., Olagunju, T. M., Chima, J. U., & Okpara, K. O. (2021). Bioactive and nutritional characterization of modeled and optimized consumer-ready flakes from pseudocereal (Amaranthus viridis), high-protein soymeal and modified corn starch. Food Production, Processing and Nutrition, 3(1), 12. https://doi.org/10.1186/s43014-021-00057-x

FDA. (2013). A food labelling guide (Januari 20). USA: Food and Drug Administration, Center for Food Safety and Applied Nutrition, Department of Health & Human Services. Retrieved from www.fda.gov/FoodLabelingGuide

FDA. (2020). Daily value and percent daily value: Changes on the new nutrition and supplement facts labels. USA: Food and Drug Administration, Center for Food Safety and Applied Nutrition, Department of Health & Human Services. Retrieved from www.FDA.gov/NewNutritionFactsLabel

Gonçalves, A., Goufo, P., Barros, A., Domínguez-Perles, R., Trindade, H., Rosa, E. A. S., …, & Rodrigues, M. (2016). Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages. Journal of the Science of Food and Agriculture, 96(9), 2941–2951. https://doi.org/10.1002/jsfa.7644

Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/10.1007/s00204-020-02689-3

Haji, A., Teka, T. A., Bereka, T., Andersa, K. N., Nekera, K. D., Abdi, G. G., ..., & Urugo, M. M. (2024). Nutritional composition, bioactive compounds, food applications, and health benefits of pigeon pea (Cajanus cajan L. Millsp.): A Review. Legume Science, 6(2), e233. https://doi.org/10.1002/leg3.233

Hung, P. Van, Yen, N. T. H., Phi, N. T. L., Tien, N. P. H., & Trung, N. T. T. (2020). Nutritional composition, enzyme activities and bioactive compounds of mung bean (Vigna radiata L.) germinated under dark and light conditions. LWT-Food Science and Technology, 133, 110100. https://doi.org/10.1016/j.lwt.2020.110100

Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., & Liyanage, R. (2018). Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793–4806. https://doi.org/10.1002/jsfa.9074

Jones, J. M., & Poutanen, K. S. (2020). Nutritional aspects of breakfast cereals. Breakfast Cereals and How They Are Made: Raw Materials, Processing, and Production, pp. 391–413. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812043-9.00019-9

Kaczmarczyk, M. M., Miller, M. J., & Freund, G. G. (2012). The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism: Clinical and Experimental, 61(8), 1058–1066. https://doi.org/10.1016/j.metabol.2012.01.017

Kaczmarska, K. T., Chandra-Hioe, M. V., Frank, D., & Arcot, J. (2018). Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT - Food Science and Technology, 87, 225–233. https://doi.org/10.1016/j.lwt.2017.08.080

Liu, H., Kang, Y., Zhao, X., Liu, Y., Zhang, X., & Zhang, S. (2019). Effects of elicitation on bioactive compounds and biological activities of sprouts. Journal of Functional Foods, 53(13), 136–145. https://doi.org/10.1016/j.jff.2018.12.019

Meilgaard, M. C., Civille, G. Y., & Carr, B. T. (2016). Attribute difference test. Sensory Evaluation Techniques (Fifth edit, pp. 123–151). CRC Press. https://doi.org/10.1111/j.1471-0307.2007.00330.x

Odeku, O. A., Ogunniyi, Q. A., Ogbole, O. O., & Fettke, J. (2024). Forgotten gems: Exploring the untapped benefits of underutilized legumes in agriculture, nutrition, and environmental sustainability. Plants, 13(9), 1208. https://doi.org/10.3390/plants13091208

Orozco-Mena, R., Salmerón-Ochoa, I., Ortega-Rivas, E., & Perez-Vega, S. (2014). Development of a sustainable process for the solid-liquid extraction of antioxidants from oat. Sustainability, 6(3), 1504–1520. https://doi.org/10.3390/su6031504

Rani, P., Kumar, A., Ranjan, S., Pavuluri, P., & Rao, S. (2020). Development of multigrain extruded flakes and their sensory analysis using fuzzy logic. Journal of Food Measurement and Characterization, 14(1), 411–424. https://doi.org/10.1007/s11694-019-00303-4

Sattar, D., Fauqiha, A. tul, Mohamed, M., Ali, T. M., & Hasnain, A. (2021). Comparative study on effects of adding germinated and non-germinated legumes on bioactive components, antioxidant, textural and sensory characteristics of cereal flakes. Legume Science, 3(1), e68. https://doi.org/10.1002/leg3.68

Sauvagot, F., & Blond, G. (1991). Effect of water activity on crispiness of breakfast cereals. Journal of Texture Studies, 22(4), 423–442. https://doi.org/10.1111/j.1745-4603.1991.tb00502.x

Shen, R.-L., Cai, F.-L., Dong, J.-L., & Hu, X.-Z. (2011). Hypoglycemic Effects and biochemical mechanisms of oat products on streptozotocin-induced diabetic mice. Journal of Agricultural and Food Chemistry, 59(16), 8895–8900. https://doi.org/10.1021/jf200678q

Sombié, P. A. E. D., Compaoré, M., Coulibaly, A. Y., Ouédraogo, J. T., Tignégré, J.-B. D. L. S., & Kiendrébéogo, M. (2018). Antioxidant and phytochemical studies of 31 cowpeas (Vigna unguiculata (L. Walp.)) genotypes from Burkina Faso. Foods, 7(9), 143. https://doi.org/10.3390/foods7090143

Stephen, A. M., Champ, M. M. J., Cloran, S. J., Fleith, M., Van Lieshout, L., Mejborn, H., & Burley, V. J. (2017). Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30(2), 149–190. https://doi.org/10.1017/S095442241700004X

Swieca, M. (2015). Production of ready-to-eat lentil sprouts with improved antioxidant capacity: Optimization of elicitation conditions with hydrogen peroxide. Food Chemistry, 180, 219–226. https://doi.org/10.1016/j.foodchem.2015.02.031

Temesgen, M., & Ratta, N. (2015). Adverse effect of fat intake on insulin sensitivity and associated risk of non-communicable diseases (NCD): A review. Advance in Life Science and Technology, 29, 23–40. Retrieved from https://www.iiste.org/Journals/index.php/ALST/article/view/19760

Thakur, M., Bhattacharya, S., Khosla, P. K., & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

Wang, B., Zhang, Q., Zhang, N., Bak, K. H., Soladoye, O. P., Aluko, R. E., ..., & Zhang, Y. (2021). Insights into formation, detection and removal of the beany flavor in soybean protein. Trends in Food Science and Technology, 112, 336–347. https://doi.org/10.1016/j.tifs.2021.04.018

Williams, P. G. (2014). The benefits of breakfast cereal consumption: A systematic review of the evidence base. Advances in Nutrition, 5, 636S–673S. https://doi.org/10.3945/an.114.006247

WHO. (2022). World health statistics 2022: Monitoring health of the SDGs, sustainable development goals. World Health Organization. Retrieved from http://apps.who.int/bookorders

Yao, B., Fang, H., Xu, W., Yan, Y., Xu, H., Liu, Y., ..., & Zhao, Y. (2014). Dietary fiber intake and risk of type 2 diabetes: A dose-response analysis of prospective studies. European Journal of Epidemiology, 29(2), 79–88. https://doi.org/10.1007/s10654-013-9876-x

Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: Antioxidative strategies. Frontiers of Medicine, 14(5), 583–600. https://doi.org/10.1007/s11684-019-0729-1

Refbacks

  • There are currently no refbacks.