New Emerging and Comprehensive Land Mapping Unit at Detailed Scale: Integrating Random Forest Analysis and Remote Sensing Techniques for Sustainable Land Management
Abstract
Keywords
Full Text:
PDFReferences
Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing, 14(3), 574. https://doi.org/10.3390/rs14030574
Aryal, J., Sitaula, C., & Frery, A. C. (2023). Land use and land cover (LULC) performance modeling using machine learning algorithms: A case study of the city of Melbourne, Australia. Scientific Reports, 13(1), 13510. https://doi.org/10.1038/s41598-023-40564-0
Bachri, S., Fathoni, M. N., Sumarmi, Masruroh, H., Wibowo, N. A., Khusna, N., ..., & Yudha, L. (2023). Geomorphological mapping and landform characterization of Semeru volcano after the eruption in 2021. IOP Conference Series: Earth and Environmental Science, 1180(1), 012004. https://doi.org/10.1088/1755-1315/1180/1/012004
Bao, Y., Yao, F., Meng, X., Wang, J., Liu, H., Wang, Y., ..., & Mouazen, A. M. (2024). A fine digital soil mapping by integrating remote sensing-based process model and deep learning method in Northeast China. Soil and Tillage Research, 238, 106010. https://doi.org/10.1016/j.still.2024.106010
Barré, P., Durand, H., Chenu, C., Meunier, P., Montagne, D., Castel, G., ..., & Cécillon, L. (2017). Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma, 285, 50–56. https://doi.org/10.1016/j.geoderma.2016.09.029
Binte Mostafiz, R., Noguchi, R., & Ahamed, T. (2021). Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land, 10(2), 223. https://doi.org/10.3390/land10020223
Bouguerra, H., Tachi, S. E., Bouchehed, H., Gilja, G., Aloui, N., Hasnaoui, Y., ..., & Navarro-Pedreño, J. (2023). Integration of high-accuracy geospatial data and machine learning approaches for soil erosion susceptibility mapping in the Mediterranean Region: A case study of the Macta Basin, Algeria. Sustainability, 15(13), 10388. https://doi.org/10.3390/su151310388
Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards, T. C. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239–240, 68–83. https://doi.org/10.1016/j.geoderma.2014.09.019
Chaoyong, W., Aslam, R. W., Quddoos, A., Naz, I., Tariq, A., Ullah, S., ..., & Almutairi, K. F. (2024). SAR image integration for multi-temporal analysis of Lake Manchar Wetland dynamics using machine learning. Scientific Reports, 14(1), 26669. https://doi.org/10.1038/s41598-024-76730-1
Cracknell, M. J., & Reading, A. M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33. https://doi.org/10.1016/j.cageo.2013.10.008
Dan, N. N., Ping, L. G., & Lang, L. P. C. (2018). Land unit mapping and evaluation of land suitability for agro – forestrye in Thua Thien Hue Province – VietNam as an Example. IOP Conference Series: Earth and Environmental Science, 159, 012012. https://doi.org/10.1088/1755-1315/159/1/012012
Djodjic, F., Bieroza, M., & Bergström, L. (2021). Land use, geology and soil properties control nutrient concentrations in headwater streams. Science of The Total Environment, 772, 145108. https://doi.org/10.1016/j.scitotenv.2021.145108
Du, L., You, X., Li, K., Meng, L., Cheng, G., Xiong, L., & Wang, G. (2019). Multi-modal deep learning for landform recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 63–75. https://doi.org/10.1016/j.isprsjprs.2019.09.018
Fang, Q., Hong, H., Algeo, T. J., Huang, X., Sun, A., Churchman, G. J., ..., & Liu, Y. (2019). Microtopography-mediated hydrologic environment controls elemental migration and mineral weathering in subalpine surface soils of subtropical monsoonal China. Geoderma, 344, 82–98. https://doi.org/10.1016/j.geoderma.2019.03.008
Fidelus-Orzechowska, J., Gorczyca, E., Bukowski, M., & Krzemień, K. (2021). Degradation of a protected mountain area by tourist traffic: Case study of the Tatra National Park, Poland. Journal of Mountain Science, 18(10), 2503–2519. https://doi.org/10.1007/s11629-020-6611-4
Haregeweyn, N., Tsunekawa, A., Tsubo, M., Fenta, A. A., Ebabu, K., Vanmaercke, M., ..., & Poesen, J. (2023). Progress and challenges in sustainable land management initiatives: A global review. Science of The Total Environment, 858, 160027. https://doi.org/10.1016/j.scitotenv.2022.160027
Heung, B., Bulmer, C. E., & Schmidt, M. G. (2014). Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma, 214–215, 141–154. https://doi.org/10.1016/j.geoderma.2013.09.016
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
Kasahun, M., & Legesse, A. (2024). Machine learning for urban land use/cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla Town. Heliyon, 10(20), e39146. https://doi.org/10.1016/j.heliyon.2024.e39146
Kirkpatrick, J. B., Green, K., Bridle, K. L., & Venn, S. E. (2014). Patterns of variation in Australian alpine soils and their relationships to parent material, vegetation formation, climate and topography. CATENA, 121, 186–194. https://doi.org/10.1016/j.catena.2014.05.005
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3
Lihawa, F. (2017). Daerah Aliran Sungai Elo erosi, sedimentasi dan longsoran. Yogyakarta: Deepublisher. Retrieved from https://repository.ung.ac.id/get/karyailmiah/8472/Fitryane-Lihawa-Daerah-Aliran-Sungai-Alo-Erosi-Sedimentasi-dan-Longsoran.pdf
Löbmann, M. T., Maring, L., Prokop, G., Brils, J., Bender, J., Bispo, A., & Helming, K. (2022). Systems knowledge for sustainable soil and land management. Science of The Total Environment, 822, 153389. https://doi.org/10.1016/j.scitotenv.2022.153389
Mamo, T. A., Tolossa, D., Senbeta, F., & Zeleke, T. (2022). Factors influencing smallholder farmers’ decision to abandon introduced sustainable land management technologies in Central Ethiopia. Caraka Tani: Journal of Sustainable Agriculture, 37(2), 385–405. https://doi.org/10.20961/carakatani.v37i2.60720
Masruroh, H., Sahrina, A., Sumarmi, Rohman, F., & Trihatmoko, E. (2024). Geomorphology mapping and landslide susceptibility for disaster risk reduction and sustainability environment in the Sub DAS Maspo, Mt. Welirang, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 1314(1), 012117. https://doi.org/10.1088/1755-1315/1314/1/012117
Matyukira, C., & Mhangara, P. (2024). Advances in vegetation mapping through remote sensing and machine learning techniques: A scientometric review. European Journal of Remote Sensing, 57(1), 2422330. https://doi.org/10.1080/22797254.2024.2422330
Mersha, E., Degefa, S., Argaw, M., & Mengist, W. (2024). Impact of land use land cover changes on ecosystem service values: Implication for landscape management. Journal of Landscape Ecology, 18(1), 61–85. https://doi.org/10.2478/jlecol-2025-0004
Mujiyo, M., Widijanto, H., Herawati, A., Rochman, F., & Rafirman, R. (2018). Potensi lahan untuk budidaya pisang di Kecamatan Jenawi Karanganyar. Caraka Tani: Journal of Sustainable Agriculture, 32(2), 142–148. https://doi.org/10.20961/carakatani.v32i2.17020
Nikparvar, B., & Thill, J.-C. (2021). Machine learning of spatial data. ISPRS International Journal of Geo-Information, 10(9), 600. https://doi.org/10.3390/ijgi10090600
Otekunrin, O. A., Otekunrin, O. A., Fasina, F. O., Omotayo, A. O., & Akram, M. (2020). Assessing the zero hunger target readiness in Africa in the face of COVID-19 Pandemic. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 213–227. https://doi.org/10.20961/carakatani.v35i2.41503
Oyawale, A. A., Adeoti, F. O., Ajayi, T. R., & Omitogun, A. A. (2020). Applications of remote sensing and geographic information system (GIS) in regional lineament mapping and structural analysis in Ikare Area, Southwestern Nigeria. Journal of Geology and Mining Research, 12(1), 13–24. https://doi.org/10.5897/JGMR2019.0310
Patria, A., & Putra, P. S. (2020). Development of the Palu–Koro Fault in NW Palu Valley, Indonesia. Geoscience Letters, 7(1), 1. https://doi.org/10.1186/s40562-020-0150-2
Phan, D. C., Trung, T. H., Truong, V. T., Sasagawa, T., Vu, T. P. T., Bui, D. T., ..., & Nasahara, K. N. (2021). First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Scientific Reports, 11(1), 9979. https://doi.org/10.1038/s41598-021-89034-5
Reddy, G. P. O., Ramamurthy, V., & Singh, S. K. (2018). Integrated remote sensing, GIS, and GPS applications in agricultural land use planning. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 21, 489–515. Springer International Publishing. https://doi.org/10.1007/978-3-319-78711-4_24
Reddy, G. P. O., & Singh, S. K. (2018). Geospatial technologies in land resources mapping, monitoring and management. Springer International Publishing. https://doi.org/10.1007/978-3-319-78711-4
Reinhart, H., Putra, R. D., & Rafida, M. R. (2023). Karst ecosystem services and their roles in the management of Gunung Sewu UNESCO global geopark. Sustinere: Journal of Environment and Sustainability, 7(3), 220–233. https://doi.org/10.22515/sustinere.jes.v7i3.349
Rozaki, Z., Kamarudin, M. F., Aziz, A. A., & Senge, M. (2023). Exploring agricultural resilience in volcano-prone regions: A case study from Mount Merapi, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 284–296. https://doi.org/10.20961/carakatani.v38i2.72390
Sahrina, A., Aksa, F. I., Labib, M. A., Purwanto, & Irawan, L. Y. (2022). Landscape as a nature laboratory in geography learning in South Malang, Indonesia. Proceedings of the 2nd International Conference on Social Knowledge Sciences and Education (ICSKSE 2022), 696, 111–127. Atlantis Press SARL. https://doi.org/10.2991/978-2-494069-63-3_12
Schmidt, F. H., & Ferguson, J. H. A. (1951). Rainfall types based on wet and dry period ratios for Indonesia with Western New Guinea. (Vol. 27). Verhandelingen, Djawatan Meteorologi dan Geofisik, Djakarta. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/19510600016
Simon, A., Wilhelmy, M., Klosterhuber, R., Cocuzza, E., Geitner, C., & Katzensteiner, K. (2021). A system for classifying subsolum geological substrates as a basis for describing soil formation. CATENA, 198, 105026. https://doi.org/10.1016/j.catena.2020.105026
Soedwiwahjono, & Pamardhi-Utomo, R. (2020). A strategy for the sustainable development of the karst area in Wonogiri. IOP Conference Series: Earth and Environmental Science, 447(1), 012057. https://doi.org/10.1088/1755-1315/447/1/012057
Srivastava, N., & Saxena, N. (2023). Applications of artificial intelligence and machine learning in geospatial data. Advances in Geospatial Technologies, pp. 196–219. IGI Global. https://doi.org/10.4018/978-1-6684-7319-1.ch010
Sukarman, S., & Ritung, S. (2013). Development and acceleration strategy of soil resources mapping in Indonesia. Jurnal Sumberdaya Lahan, 7(1), 1–14. https://doi.org/10.2018/jsdl.v7i1.6421
Sumarmi, S., Kresnajaya, A., A, A. H., & Fadlurrahman, I. (2022). Assessing the suitability of land in South Malang for conversion to oil palm plantations and the possible environmental impacts. KnE Social Sciences, 7(16), 124–132. https://doi.org/10.18502/kss.v7i16.12160
Trivedi, M. B., Marshall, M., Estes, L., De Bie, C. A. J. M., Chang, L., & Nelson, A. (2023). Cropland mapping in tropical smallholder systems with seasonally stratified sentinel-1 and sentinel-2 spectral and textural features. Remote Sensing, 15(12), 3014. https://doi.org/10.3390/rs15123014
Ullah, S., Abbas, M., & Qiao, X. (2024). Impact assessment of land-use alteration on land surface temperature in Kabul using machine learning algorithm. Journal of Spatial Science, 1–23. https://doi.org/10.1080/14498596.2024.2364283
Ullah, S., Qiao, X., & Tariq, A. (2025a). Impact assessment of planned and unplanned urbanization on land surface temperature in Afghanistan using machine learning algorithms: A path toward sustainability. Scientific Reports, 15(1), 3092. https://doi.org/10.1038/s41598-025-87234-x
Ullah, W., Ahmad, K., Tahir, A. A., Ullah, S., Rafiq, M. T., & Abdullah-Al-Wadud, M. (2025b). Impacts of tourism on LULC and LST dynamics in district Buner and Shangla, Pakistan. Scientific Reports, 15(1), 9304. https://doi.org/10.1038/s41598-025-94230-8
Wang, C., Zhang, W., Ji, Y., Marino, A., Li, C., Wang, L., ..., & Wang, M. (2024). Estimation of aboveground biomass for different forest types using data from sentinel-1, sentinel-2, ALOS PALSAR-2, and GEDI. Forests, 15(1), 215. https://doi.org/10.3390/f15010215
Wang, F., Chen, H., Lian, J., Fu, Z., & Nie, Y. (2018). Preferential flow in different soil architectures of a small karst catchment. Vadose Zone Journal, 17(1), 1–10. https://doi.org/10.2136/vzj2018.05.0107
Wang, Q., Shi, W., Li, Z., & Atkinson, P. M. (2016). Fusion of sentinel-2 images. Remote Sensing of Environment, 187, 241–252. https://doi.org/10.1016/j.rse.2016.10.030
Weiss, A. (2001). Topographic position and landforms analysis. Poster presentation, ESRI user conference, San Diego, CA, 200. Retrieved from https://env761.github.io/assets/files/tpi-poster-tnc_18x22.pdf
Wicaksono, K. P., Permanasari, P. N., & Saitama, A. (2023). Analysis the potential of Malang Regency as a center for oil palm plantations in East Java. International Journal of Environment, Agriculture and Biotechnology, 8(4), 162–168. https://doi.org/10.22161/ijeab.84.17
Woś, B., & Pietrzykowski, M. (2021). Characteristics of technogenic soils developed from Neogene and Quaternary sediments substrate on reclaimed sulphur and sand extraction mine sites. Soil Science Annual, 71(4), 344–351. https://doi.org/10.37501/soilsa/126996
Zaka, M. M., & Samat, A. (2024). Advances in remote sensing and machine learning methods for invasive plants study: A comprehensive review. Remote Sensing, 16(20), 3781. https://doi.org/10.3390/rs16203781
Zeraatpisheh, M., Bottega, E. L., Bakhshandeh, E., Owliaie, H. R., Taghizadeh-Mehrjardi, R., Kerry, R., ..., & Xu, M. (2022). Spatial variability of soil quality within management zones: Homogeneity and purity of delineated zones. CATENA, 209, 105835. https://doi.org/10.1016/j.catena.2021.105835
Zhan, J. (2023). The sustainable management of land systems. Frontiers in Sustainable Resource Management, 2, 1240771. https://doi.org/10.3389/fsrma.2023.1240771
Zhang, A., Tariq, A., Quddoos, A., Naz, I., Aslam, R. W., Barboza, E., ..., & Abdullah-Al-Wadud, M. (2025). Spatio-temporal analysis of urban expansion and land use dynamics using google earth engine and predictive models. Scientific Reports, 15(1), 6993. https://doi.org/10.1038/s41598-025-92034-4
Zhao, W., Xiong, L., Ding, H., & Tang, G. (2017). Automatic recognition of loess landforms using Random Forest method. Journal of Mountain Science, 14(5), 885–897. https://doi.org/10.1007/s11629-016-4320-9
Refbacks
- There are currently no refbacks.