Carbonaceous Particles from Candle Soot Enhance Water Absorption and Modulate Starch-Sugar Metabolism in Solanaceae Seed Germination
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(22), 2686–2725. https://doi.org/10.1080/15567036.2018.1511642
Amin, N., & Aziz, K. (2025). Copper oxide-based nanoparticles in agro-nanotechnology: Advances and applications for sustainable farming. Agriculture and Food Security, 14, 7. https://doi.org/10.1186/s40066-025-00530-7
Azizov, I., Chhu, A., Saiti, E., Saikia, T., Ahmed, H., & Øye, G. (2025). The influence of surface properties on the retention and mobilization of silica particles in a porous network investigated by microfluidic methods. Transport in Porous Media, 152(7), 43. https://doi.org/10.1007/s11242-025-02182-4
Bareke, T. (2018). The link between agricultural production and population dynamics in Ethiopia: A review. Advances in Plants & Agriculture Research, 8(4), 336–346. https://doi.org/10.15406/apar.2018.08.00336
Bozdar, B., Ahmed, N., Tu, P., & Li, Z. H. (2025). Beyond energy: How small-molecule sugars fuel seed life and shape next-generation crop technologies. Journal of Agronomy and Crop Science, 211(2), e70050. https://doi.org/10.1111/jac.70050
Brain, R., Perkins, D., Ghebremichael, L., White, M., Goodwin, G., & Aerts, M. (2023). The shrinking land challenge. ACS Agricultural Science and Technology, 3(2), 152–157. https://doi.org/10.1021/acsagscitech.2c00250
Chen, J., Mu, Q., & Tian, X. (2019). Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Materials Express, 9(6), 635–640. https://doi.org/10.1166/mex.2019.1538
Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015
Durgadevi, P., Girigoswami, K., & Girigoswami, A. (2025). Biodegradable nanomaterials in boosting seed vigor and germination: Seed coating towards sustainability. Discover Applied Sciences, 7, 695. https://doi.org/10.1007/s42452-025-06737-4
El Badawy, A. M., Luxton, T. P., Silva, R. G., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science and Technology, 44(4), 1260–1266. https://doi.org/10.1021/es902240k
Faizal, F., Khairunnisa, M. P., Yokote, S., & Lenggoro, I. W. (2018). Carbonaceous nanoparticle layers prepared using candle soot by direct- and spray-based depositions. Aerosol and Air Quality Research, 18(4), 856–865. https://doi.org/10.4209/aaqr.2017.10.0426
Farooq, M. A., Ma, W., Shen, S., & Gu, A. (2022). Underlying biochemical and molecular mechanisms for seed germination. International Journal of Molecular Sciences, 23(15), 8502. https://doi.org/10.3390/ijms23158502
Farooq, M. A., Zhang, X., Zafar, M. M., Ma, W., & Zhao, J. (2021). Roles of reactive oxygen species and mitochondria in seed germination. Frontiers in Plant Science, 12, 781734. https://doi.org/10.3389/fpls.2021.781734
Fernández-Pascual, E., Carta, A., Mondoni, A., Cavieres, L. A., Rosbakh, S., Venn, S., ... & Jiménez-Alfaro, B. (2021). The seed germination spectrum of alpine plants: A global meta-analysis. New Phytologist, 229(6), 3573–3586. https://doi.org/10.1111/nph.17086
González-García, Y., López-Vargas, E. R., Pérez-Álvarez, M., Cadenas-Pliego, G., Benavides-Mendoza, A., Valdés-Reyna, J., ... & Juárez-Maldonado, A. (2022). Seed priming with carbon nanomaterials improves the bioactive compounds of tomato plants under saline stress. Plants, 11(15), 1984. https://doi.org/10.3390/plants11151984
Gopal, V., Venkataraman, A., Babu, L., & Rajan, R. (2021). Preparation of black lyophilic ink using the carbon soot emitted by vehicles. Environmental Science and Pollution Research, 28, 63440–63447. https://doi.org/10.1007/s11356-020-09329-4
Gregory, D., Yang, S., Massion, C., Mecklenburg, M., Aravind, I., Radonjic, M., ... & Çapraz, Ö. Ö. (2022). Utilizing nanoscale particulate matter from the combustion of diesel fuels as a carbonaceous anode electrode for Li-ion batteries. Resources, Conservation and Recycling, 177, 105972. https://doi.org/10.1016/j.resconrec.2021.105972
Habibi, N., Parneel, Terada, N., Pachakkil, B., Sanada, A., Kamata, A., & Koshio, K. (2025). Effect of priming treatment on improving germination and seedling performance of aged and iron-coated rice seeds aiming for direct sowing. Plants, 14(11), 1683. https://doi.org/10.3390/plants14111683
Hafiz, N. A., Sembada, A. A., Osman, M. S., Abu Bakar, N. F., So’aib, M. S., & Lenggoro, I. W. (2025). Concentration-driven interactions of chitosan-stabilized iron oxide nanoparticles in seed nano-priming and germination performance of Lactuca sativa. Nanotechnology for Environmental Engineering, 10, 52. https://doi.org/10.1007/s41204-025-00443-7
Haghighi, M., & da Silva, J. A. T. (2014). The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology, 17(4), 201–208. https://doi.org/10.1007/s12892-014-0057-6
Hameed, A., Hussain, S., Nisar, F., Rasheed, A., & Shah, S. Z. (2025). Seed priming as an effective technique for enhancing salinity tolerance in plants: Mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds, 4(1), 14. https://doi.org/10.3390/seeds4010014
Handayani, W., Tanadi, R. O., & Umar, A. (2025). The effect of silver nanoparticles stabilized with tannic acid for nano-priming on Zea mays L. seeds germination. Caraka Tani: Journal of Sustainable Agriculture, 40(1), 1–17. https://doi.org/10.20961/carakatani.v40i1.85977
Hatami, M., Hadian, J., & Ghorbanpour, M. (2017). Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324, 306–320. https://doi.org/10.1016/j.jhazmat.2016.10.064
He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11(4), 1928–1937. https://doi.org/10.1007/s12274-017-1810-1
Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M. E., Bekyarova, E., & Haddon, R. C. (2005). Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. Journal of Physical Chemistry B, 109(23), 11520–11524. https://doi.org/10.1021/jp050781w
Huang, P., Li, C., Liu, H., Zhao, Z., & Liao, W. (2021). Hydrogen gas improves seed germination in cucumber by regulating sugar and starch metabolisms. Horticulturae, 7(11), 456. https://doi.org/10.3390/horticulturae7110456
Kamal, A., Ahmad, F., & Shafeeque, M. (2020). Toxicity of pesticides to plants and non-target organism: A comprehensive review. Iranian Journal of Plant Physiology, 10(4), 3299–3313. https://doi.org/10.30495/ijpp.2020.1885628.1183
Kaymak, H. Ç., Sevim, M., & Metin, Ö. (2022). Graphene oxide: A promising material for the germination of melon seeds under salinity stress. Turkish Journal of Agriculture and Forestry, 46(6), 863–874. https://doi.org/10.55730/1300-011X.3048
Khan, M., Refati, M. F. A. D., Arup, M. M. R., Islam, M. A., & Mobarak, M. H. (2025). Conductive polymer-based electronics in additive manufacturing: Materials, processing, and applications. Advances in Polymer Technology, 2025(1), 4234491. https://doi.org/10.1155/adv/4234491
Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227. https://doi.org/10.1021/nn900887m
Kumar, P., & Bohidar, H. B. (2012). Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. Journal of Nanoparticle Research, 14(7), 948. https://doi.org/10.1007/s11051-012-0948-8
Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., & Khodakovskaya, M. V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials and Interfaces, 5(16), 7965–7973. https://doi.org/10.1021/am402052x
Li, J., Wu, F., Fang, Q., Wu, Z., Duan, Q., Li, X., & Ye, W. (2020). The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. Plant Physiology and Biochemistry, 147, 289–294. https://doi.org/10.1016/j.plaphy.2019.12.034
López-Vargas, E. R., González-García, Y., Pérez-Álvarez, M., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A., ... & Juárez-Maldonado, A. (2020). Seed priming with carbon nanomaterials to modify the germination, growth, and antioxidant status of tomato seedlings. Agronomy, 10(5), 639. https://doi.org/10.3390/agronomy10050639
Martínez-Ballesta, M. del C., Egea-Gilabert, C., Conesa, E., Ochoa, J., Vicente, M. J., Franco, J. A., ... & Fernández, J. A. (2020). The importance of ion homeostasis and nutrient status in seed development and germination. Agronomy, 10(4), 504. https://doi.org/10.3390/agronomy10040504
Mas-Carrió, E., Dini-Andreote, F., Brossi, M. J. de L., Salles, J. F., & Olff, H. (2018). Organic amendment under increasing agricultural intensification: Effects on soil bacterial communities and plant productivity. Frontiers in Microbiology, 9, 2612. https://doi.org/10.3389/fmicb.2018.02612
Mazhar, M. W., Arshad, A., Parveen, A., Azeem, M., Ishtiaq, M., Thind, S., ... & Elansary, H. O. (2025). Interaction of arsenic stress and graphene oxide nanoparticle seed priming modulates hormonal signalling to enhance soybean (Glycine max L.) growth and antioxidant defence. Environmental Pollutants and Bioavailability, 37(1), 2523548. https://doi.org/10.1080/26395940.2025.2523548
Mulay, M. R., Chauhan, A., Patel, S., Balakrishnan, V., Halder, A., & Vaish, R. (2019). Candle soot: Journey from a pollutant to a functional material. Carbon, 144, 684–712. https://doi.org/10.1016/j.carbon.2018.12.083
Mushtaq, Y. K. (2011). Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 46(14), 1732–1735. https://doi.org/10.1080/10934529.2011.633403
Nayak, A. K., Singh, A., Mesgarpour, M., & Safdari Shadloo, M. (2025). A numerical investigation of particle deposition on a substrate. European Physical Journal: Special Topics. https://doi.org/10.1140/epjs/s11734-025-01681-1
Ndip, F. E., & Sakurai, T. (2025). Enhancing agricultural intensification through contract farming: Evidence from rice production in Senegal. Agriculture and Food Security, 14, 6. https://doi.org/10.1186/s40066-025-00525-4
Nkosi, N. N., Zharare, G. E., Zimudzi, C., Stedje, B., & Ntuli, N. R. (2025). Effects of smoke, red light, potassium nitrate and alternate temperature on seed germination of Laggera alata and Laggera crispata forms. Discover Plants, 2, 203. https://doi.org/10.1007/s44372-025-00295-0
Porfido, C., Allegretta, I., Marguí, E., Garau, M., Pinna, M. V., Gattullo, C. E., ... & Spagnuolo, M. (2025). Total-reflection X-ray fluorescence analysis (TXRF) of plant’s guttation fluids as a new, fast, and non-invasive strategy for the assessment of the bioavailability of Zn, Cd and Pb in contaminated soils. Spectrochimica Acta - Part B Atomic Spectroscopy, 230, 107217. https://doi.org/10.1016/j.sab.2025.107217
Prajapati, R., Kataria, S., & Jain, M. (2020). Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Science Today, 7(3), 308–313. https://doi.org/10.14719/PST.2020.7.3.751
Qahtan, T. F., Gondal, M. A., Alade, I. O., & Dastageer, M. A. (2017). Fabrication of water jet resistant and thermally stable superhydrophobic surfaces by spray coating of candle soot dispersion. Scientific Reports, 7, 7531. https://doi.org/10.1038/s41598-017-06753-4
Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2), 129–150. https://doi.org/10.1002/aepp.13044
Raza, A., Khare, T., Zhang, X., Rahman, M. M., Hussain, M., Gill, S. S., ... & Varshney, R. K. (2025). Novel strategies for designing climate-smart crops to ensure sustainable agriculture and future food security. Journal of Sustainable Agriculture and Environment, 4(2), e70048. https://doi.org/10.1002/sae2.70048
Sembada, A. A., & Faizal, A. (2019). Effect of polyculture cultivation system and addition of abscisic acid (ABA) on enhancement of starch and protein content from duckweeds. AIP Conference Proceedings, 2120, 030026. https://doi.org/10.1063/1.5115630
Sembada, A. A., & Faizal, A. (2022). Protein and lipid composition of duckweeds (Landoltia punctata and Wolffia arrhiza) grown in a controlled cultivation system. Asian Journal of Plant Sciences, 21(4), 637–642. https://doi.org/10.3923/ajps.2022.637.642
Sembada, A. A., Fukuhara, T., Suzuki, T., & Lenggoro, I. W. (2024a). Stem cutting: A novel introduction site for transporting water-insoluble particles into tomato (Solanum lycopersicum) seedlings. Plant Physiology and Biochemistry, 206, 108297. https://doi.org/10.1016/j.plaphy.2023.108297
Sembada, A. A., Harada, R., Maki, S., Fukuhara, T., Suzuki, T., & Lenggoro, I. W. (2024b). Candle soot colloids enhance tomato (Solanum lycopersicum) seed germination and seedling quality. Discover Agriculture, 2, 1. https://doi.org/10.1007/s44279-024-00011-8
Sembada, A. A., & Lenggoro, I. W. (2023). Comparative analysis of germination performance from several species of seeds under influence of silica nanoparticles. IOP Conference Series: Earth and Environmental Science, 1271, 012085. https://doi.org/10.1088/1755-1315/1271/1/012085
Sembada, A. A., & Lenggoro, I. W. (2024). Nanopriming of tomato (Solanum lycopersicum) seeds against heavy metal stress during germination and seedling formation. BIO Web of Conferences, 91, 01005. https://doi.org/10.1051/bioconf/20249101005
Shrestha, S., Dhungana, M., Sahani, S., & Bhattarai, B. (2021). Seed quality improvement to approach sustainable yield of field crops by various preparation techniques: Seed priming, treatment and inoculation_A review. Plant Physiology and Soil Chemistry, 1(1), 12–20. https://doi.org/10.26480/ppsc.01.2021.12.20
Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005
Singh, V. P., Date, I. M., & Sharma, J. D. (2024). A review on waste carbon soot as a functional material for water remediation. International Journal of Environmental Science and Technology, 22, 2793–2808. https://doi.org/10.1007/s13762-024-05886-0
Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428
Tamimi, S. M. (2024). The efficiency of seed priming with dead sea water for improving germination and early seedling growth of wheat (Triticum aestivum L.) under salinity. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 343–358. https://doi.org/10.20961/carakatani.v39i2.87161
Tan, S., Cao, J., Li, S., & Li, Z. (2025). Unraveling the mechanistic basis for control of seed longevity. Plants, 14(5), 805. https://doi.org/10.3390/plants14050805
Towett, E. K., Shepherd, K. D., & Lee Drake, B. (2016). Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: Quantification under different analytical parameters. X-Ray Spectrometry, 45(2), 117–124. https://doi.org/10.1002/xrs.2678
Ullah, A., Sadaf, S., Ullah, S., Alshaya, H., Okla, M. K., Alwasel, Y. A., & Tariq, A. (2022). Using halothermal time model to describe barley (Hordeum vulgare L.) seed germination response to water potential and temperature. Life, 12(2), 209. https://doi.org/10.3390/life12020209
Wang, L., Yang, X., Wang, Q., Zeng, Y., Ding, L., & Jiang, W. (2017). Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes. Journal of Environmental Sciences, 51, 248–255. https://doi.org/10.1016/j.jes.2016.07.003
Wang, M., Sun, G., Li, G., Hu, G., Fu, L., Hu, S., ... & Gu, W. (2024). Effects of multi walled carbon nanotubes and nano-SiO2 on key enzymes for seed germination and endogenous hormone level in maize seedling. Agronomy, 14(12), 2908. https://doi.org/10.3390/agronomy14122908
Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 14(6), 841. https://doi.org/10.1007/s11051-012-0841-5
Yadav, D., Das, S., Dhillayan, D., Yadav, S., & Bhukal, S. (2025). Environmentally benign nanotechnology: Transforming elements into nano-agrochemicals for sustainable farming. Discover Agriculture, 3, 67. https://doi.org/10.1007/s44279-025-00224-5
Yang, Y., Wang, G., Li, G., Ma, R., Kong, Y., & Yuan, J. (2021). Selection of sensitive seeds for evaluation of compost maturity with the seed germination index. Waste Management, 136, 238–243. https://doi.org/10.1016/j.wasman.2021.09.037
Yi, L. W., Krishnamoorthy, S., Mohammad, Y. H., Hassan, U. H., Abidin, K. M., & Metali, F. (2025). Enhancing germination and early growth of curly lettuce using fermented liquid extract of Padina australis Hauck. Caraka Tani: Journal of Sustainable Agriculture, 40(2), 197–208. https://doi.org/10.20961/carakatani.v40i2.94086
Zaim, N. S. H. B. H., Tan, H. L., Rahman, S. M. A., Abu Bakar, N. F., Osman, M. S., Thakur, V. K., & Radacsi, N. (2023). Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. Journal of Plant Growth Regulation, 42(12), 7374–7402. https://doi.org/10.1007/s00344-023-11038-4
Zhang, K., Wang, Y., Mao, J., & Chen, B. (2020). Effects of biochar nanoparticles on seed germination and seedling growth. Environmental Pollution, 256, 113409. https://doi.org/10.1016/j.envpol.2019.113409
Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17, 78. https://doi.org/10.1007/s11051-015-2885-9
Zvinavashe, A. T., Lim, E., Sun, H., & Marelli, B. (2019). A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proceedings of the National Academy of Sciences of the United States of America, 116, 51. https://doi.org/10.1073/pnas.1915902116
Refbacks
- There are currently no refbacks.