Carbonaceous Particles from Candle Soot Enhance Water Absorption and Modulate Starch-Sugar Metabolism in Solanaceae Seed Germination

Anca Awal Sembada, Ahmad Faizal, Rizkita Rachmi Esyanti, Yuli Setyo Indartono, I. Wuled Lenggoro

Abstract

Candle soot is a source of carbonaceous compounds that has been viewed as unwanted air pollution. Few have attempted to apply candle soot in agriculture, specifically for seed germination. This study was conducted to determine the effect of using candle soot on the germination of seeds from the Solanaceae family (Capsicum annuum, Solanum lycopersicum, and Solanum melongena). Three concentrations (10-2, 10-3, and 10-4 wt%) of candle soot were used. The results showed an improvement in measurable germination parameters and seedling quality parameters. The 10-3 wt% concentration was able to reduce the time needed for germination compared to the control by 11% in C. annuum, 12% in S. lycopersicum, and 10% in S. melongena. Further evaluation was conducted by analyzing the elements present in the seedlings. The results showed that the elemental information of seedlings treated with candle soot did not differ significantly from the control. This indicates that candle soot is biocompatible for agricultural applications. Further evaluation was also carried out to analyze biochemical components such as starch and soluble sugar, which play a crucial role in the seed germination process. The results showed a significant (p < 0.05) decrease in starch content compared to the control, while the soluble sugar content increased during treatment with candle soot. These carbonaceous particles could be a potential approach to enhancing germination and promoting sustainable agricultural practices, as revealed by this investigation.

Keywords

carbon; growth; hydrophilic; moisture; particles; seedlings

Full Text:

PDF

References

Ahmad, D., van den Boogaert, I., Miller, J., Presswell, R., & Jouhara, H. (2018). Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(22), 2686–2725. https://doi.org/10.1080/15567036.2018.1511642

Amin, N., & Aziz, K. (2025). Copper oxide-based nanoparticles in agro-nanotechnology: Advances and applications for sustainable farming. Agriculture and Food Security, 14, 7. https://doi.org/10.1186/s40066-025-00530-7

Azizov, I., Chhu, A., Saiti, E., Saikia, T., Ahmed, H., & Øye, G. (2025). The influence of surface properties on the retention and mobilization of silica particles in a porous network investigated by microfluidic methods. Transport in Porous Media, 152(7), 43. https://doi.org/10.1007/s11242-025-02182-4

Bareke, T. (2018). The link between agricultural production and population dynamics in Ethiopia: A review. Advances in Plants & Agriculture Research, 8(4), 336–346. https://doi.org/10.15406/apar.2018.08.00336

Bozdar, B., Ahmed, N., Tu, P., & Li, Z. H. (2025). Beyond energy: How small-molecule sugars fuel seed life and shape next-generation crop technologies. Journal of Agronomy and Crop Science, 211(2), e70050. https://doi.org/10.1111/jac.70050

Brain, R., Perkins, D., Ghebremichael, L., White, M., Goodwin, G., & Aerts, M. (2023). The shrinking land challenge. ACS Agricultural Science and Technology, 3(2), 152–157. https://doi.org/10.1021/acsagscitech.2c00250

Chen, J., Mu, Q., & Tian, X. (2019). Phytotoxicity of graphene oxide on rice plants is concentration-dependent. Materials Express, 9(6), 635–640. https://doi.org/10.1166/mex.2019.1538

Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015

Durgadevi, P., Girigoswami, K., & Girigoswami, A. (2025). Biodegradable nanomaterials in boosting seed vigor and germination: Seed coating towards sustainability. Discover Applied Sciences, 7, 695. https://doi.org/10.1007/s42452-025-06737-4

El Badawy, A. M., Luxton, T. P., Silva, R. G., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2010). Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental Science and Technology, 44(4), 1260–1266. https://doi.org/10.1021/es902240k

Faizal, F., Khairunnisa, M. P., Yokote, S., & Lenggoro, I. W. (2018). Carbonaceous nanoparticle layers prepared using candle soot by direct- and spray-based depositions. Aerosol and Air Quality Research, 18(4), 856–865. https://doi.org/10.4209/aaqr.2017.10.0426

Farooq, M. A., Ma, W., Shen, S., & Gu, A. (2022). Underlying biochemical and molecular mechanisms for seed germination. International Journal of Molecular Sciences, 23(15), 8502. https://doi.org/10.3390/ijms23158502

Farooq, M. A., Zhang, X., Zafar, M. M., Ma, W., & Zhao, J. (2021). Roles of reactive oxygen species and mitochondria in seed germination. Frontiers in Plant Science, 12, 781734. https://doi.org/10.3389/fpls.2021.781734

Fernández-Pascual, E., Carta, A., Mondoni, A., Cavieres, L. A., Rosbakh, S., Venn, S., ... & Jiménez-Alfaro, B. (2021). The seed germination spectrum of alpine plants: A global meta-analysis. New Phytologist, 229(6), 3573–3586. https://doi.org/10.1111/nph.17086

González-García, Y., López-Vargas, E. R., Pérez-Álvarez, M., Cadenas-Pliego, G., Benavides-Mendoza, A., Valdés-Reyna, J., ... & Juárez-Maldonado, A. (2022). Seed priming with carbon nanomaterials improves the bioactive compounds of tomato plants under saline stress. Plants, 11(15), 1984. https://doi.org/10.3390/plants11151984

Gopal, V., Venkataraman, A., Babu, L., & Rajan, R. (2021). Preparation of black lyophilic ink using the carbon soot emitted by vehicles. Environmental Science and Pollution Research, 28, 63440–63447. https://doi.org/10.1007/s11356-020-09329-4

Gregory, D., Yang, S., Massion, C., Mecklenburg, M., Aravind, I., Radonjic, M., ... & Çapraz, Ö. Ö. (2022). Utilizing nanoscale particulate matter from the combustion of diesel fuels as a carbonaceous anode electrode for Li-ion batteries. Resources, Conservation and Recycling, 177, 105972. https://doi.org/10.1016/j.resconrec.2021.105972

Habibi, N., Parneel, Terada, N., Pachakkil, B., Sanada, A., Kamata, A., & Koshio, K. (2025). Effect of priming treatment on improving germination and seedling performance of aged and iron-coated rice seeds aiming for direct sowing. Plants, 14(11), 1683. https://doi.org/10.3390/plants14111683

Hafiz, N. A., Sembada, A. A., Osman, M. S., Abu Bakar, N. F., So’aib, M. S., & Lenggoro, I. W. (2025). Concentration-driven interactions of chitosan-stabilized iron oxide nanoparticles in seed nano-priming and germination performance of Lactuca sativa. Nanotechnology for Environmental Engineering, 10, 52. https://doi.org/10.1007/s41204-025-00443-7

Haghighi, M., & da Silva, J. A. T. (2014). The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. Journal of Crop Science and Biotechnology, 17(4), 201–208. https://doi.org/10.1007/s12892-014-0057-6

Hameed, A., Hussain, S., Nisar, F., Rasheed, A., & Shah, S. Z. (2025). Seed priming as an effective technique for enhancing salinity tolerance in plants: Mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds, 4(1), 14. https://doi.org/10.3390/seeds4010014

Handayani, W., Tanadi, R. O., & Umar, A. (2025). The effect of silver nanoparticles stabilized with tannic acid for nano-priming on Zea mays L. seeds germination. Caraka Tani: Journal of Sustainable Agriculture, 40(1), 1–17. https://doi.org/10.20961/carakatani.v40i1.85977

Hatami, M., Hadian, J., & Ghorbanpour, M. (2017). Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. Journal of Hazardous Materials, 324, 306–320. https://doi.org/10.1016/j.jhazmat.2016.10.064

He, Y., Hu, R., Zhong, Y., Zhao, X., Chen, Q., & Zhu, H. (2018). Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 11(4), 1928–1937. https://doi.org/10.1007/s12274-017-1810-1

Hu, H., Yu, A., Kim, E., Zhao, B., Itkis, M. E., Bekyarova, E., & Haddon, R. C. (2005). Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. Journal of Physical Chemistry B, 109(23), 11520–11524. https://doi.org/10.1021/jp050781w

Huang, P., Li, C., Liu, H., Zhao, Z., & Liao, W. (2021). Hydrogen gas improves seed germination in cucumber by regulating sugar and starch metabolisms. Horticulturae, 7(11), 456. https://doi.org/10.3390/horticulturae7110456

Kamal, A., Ahmad, F., & Shafeeque, M. (2020). Toxicity of pesticides to plants and non-target organism: A comprehensive review. Iranian Journal of Plant Physiology, 10(4), 3299–3313. https://doi.org/10.30495/ijpp.2020.1885628.1183

Kaymak, H. Ç., Sevim, M., & Metin, Ö. (2022). Graphene oxide: A promising material for the germination of melon seeds under salinity stress. Turkish Journal of Agriculture and Forestry, 46(6), 863–874. https://doi.org/10.55730/1300-011X.3048

Khan, M., Refati, M. F. A. D., Arup, M. M. R., Islam, M. A., & Mobarak, M. H. (2025). Conductive polymer-based electronics in additive manufacturing: Materials, processing, and applications. Advances in Polymer Technology, 2025(1), 4234491. https://doi.org/10.1155/adv/4234491

Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227. https://doi.org/10.1021/nn900887m

Kumar, P., & Bohidar, H. B. (2012). Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. Journal of Nanoparticle Research, 14(7), 948. https://doi.org/10.1007/s11051-012-0948-8

Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., & Khodakovskaya, M. V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials and Interfaces, 5(16), 7965–7973. https://doi.org/10.1021/am402052x

Li, J., Wu, F., Fang, Q., Wu, Z., Duan, Q., Li, X., & Ye, W. (2020). The mutual effects of graphene oxide nanosheets and cadmium on the growth, cadmium uptake and accumulation in rice. Plant Physiology and Biochemistry, 147, 289–294. https://doi.org/10.1016/j.plaphy.2019.12.034

López-Vargas, E. R., González-García, Y., Pérez-Álvarez, M., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A., ... & Juárez-Maldonado, A. (2020). Seed priming with carbon nanomaterials to modify the germination, growth, and antioxidant status of tomato seedlings. Agronomy, 10(5), 639. https://doi.org/10.3390/agronomy10050639

Martínez-Ballesta, M. del C., Egea-Gilabert, C., Conesa, E., Ochoa, J., Vicente, M. J., Franco, J. A., ... & Fernández, J. A. (2020). The importance of ion homeostasis and nutrient status in seed development and germination. Agronomy, 10(4), 504. https://doi.org/10.3390/agronomy10040504

Mas-Carrió, E., Dini-Andreote, F., Brossi, M. J. de L., Salles, J. F., & Olff, H. (2018). Organic amendment under increasing agricultural intensification: Effects on soil bacterial communities and plant productivity. Frontiers in Microbiology, 9, 2612. https://doi.org/10.3389/fmicb.2018.02612

Mazhar, M. W., Arshad, A., Parveen, A., Azeem, M., Ishtiaq, M., Thind, S., ... & Elansary, H. O. (2025). Interaction of arsenic stress and graphene oxide nanoparticle seed priming modulates hormonal signalling to enhance soybean (Glycine max L.) growth and antioxidant defence. Environmental Pollutants and Bioavailability, 37(1), 2523548. https://doi.org/10.1080/26395940.2025.2523548

Mulay, M. R., Chauhan, A., Patel, S., Balakrishnan, V., Halder, A., & Vaish, R. (2019). Candle soot: Journey from a pollutant to a functional material. Carbon, 144, 684–712. https://doi.org/10.1016/j.carbon.2018.12.083

Mushtaq, Y. K. (2011). Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 46(14), 1732–1735. https://doi.org/10.1080/10934529.2011.633403

Nayak, A. K., Singh, A., Mesgarpour, M., & Safdari Shadloo, M. (2025). A numerical investigation of particle deposition on a substrate. European Physical Journal: Special Topics. https://doi.org/10.1140/epjs/s11734-025-01681-1

Ndip, F. E., & Sakurai, T. (2025). Enhancing agricultural intensification through contract farming: Evidence from rice production in Senegal. Agriculture and Food Security, 14, 6. https://doi.org/10.1186/s40066-025-00525-4

Nkosi, N. N., Zharare, G. E., Zimudzi, C., Stedje, B., & Ntuli, N. R. (2025). Effects of smoke, red light, potassium nitrate and alternate temperature on seed germination of Laggera alata and Laggera crispata forms. Discover Plants, 2, 203. https://doi.org/10.1007/s44372-025-00295-0

Porfido, C., Allegretta, I., Marguí, E., Garau, M., Pinna, M. V., Gattullo, C. E., ... & Spagnuolo, M. (2025). Total-reflection X-ray fluorescence analysis (TXRF) of plant’s guttation fluids as a new, fast, and non-invasive strategy for the assessment of the bioavailability of Zn, Cd and Pb in contaminated soils. Spectrochimica Acta - Part B Atomic Spectroscopy, 230, 107217. https://doi.org/10.1016/j.sab.2025.107217

Prajapati, R., Kataria, S., & Jain, M. (2020). Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Science Today, 7(3), 308–313. https://doi.org/10.14719/PST.2020.7.3.751

Qahtan, T. F., Gondal, M. A., Alade, I. O., & Dastageer, M. A. (2017). Fabrication of water jet resistant and thermally stable superhydrophobic surfaces by spray coating of candle soot dispersion. Scientific Reports, 7, 7531. https://doi.org/10.1038/s41598-017-06753-4

Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2), 129–150. https://doi.org/10.1002/aepp.13044

Raza, A., Khare, T., Zhang, X., Rahman, M. M., Hussain, M., Gill, S. S., ... & Varshney, R. K. (2025). Novel strategies for designing climate-smart crops to ensure sustainable agriculture and future food security. Journal of Sustainable Agriculture and Environment, 4(2), e70048. https://doi.org/10.1002/sae2.70048

Sembada, A. A., & Faizal, A. (2019). Effect of polyculture cultivation system and addition of abscisic acid (ABA) on enhancement of starch and protein content from duckweeds. AIP Conference Proceedings, 2120, 030026. https://doi.org/10.1063/1.5115630

Sembada, A. A., & Faizal, A. (2022). Protein and lipid composition of duckweeds (Landoltia punctata and Wolffia arrhiza) grown in a controlled cultivation system. Asian Journal of Plant Sciences, 21(4), 637–642. https://doi.org/10.3923/ajps.2022.637.642

Sembada, A. A., Fukuhara, T., Suzuki, T., & Lenggoro, I. W. (2024a). Stem cutting: A novel introduction site for transporting water-insoluble particles into tomato (Solanum lycopersicum) seedlings. Plant Physiology and Biochemistry, 206, 108297. https://doi.org/10.1016/j.plaphy.2023.108297

Sembada, A. A., Harada, R., Maki, S., Fukuhara, T., Suzuki, T., & Lenggoro, I. W. (2024b). Candle soot colloids enhance tomato (Solanum lycopersicum) seed germination and seedling quality. Discover Agriculture, 2, 1. https://doi.org/10.1007/s44279-024-00011-8

Sembada, A. A., & Lenggoro, I. W. (2023). Comparative analysis of germination performance from several species of seeds under influence of silica nanoparticles. IOP Conference Series: Earth and Environmental Science, 1271, 012085. https://doi.org/10.1088/1755-1315/1271/1/012085

Sembada, A. A., & Lenggoro, I. W. (2024). Nanopriming of tomato (Solanum lycopersicum) seeds against heavy metal stress during germination and seedling formation. BIO Web of Conferences, 91, 01005. https://doi.org/10.1051/bioconf/20249101005

Shrestha, S., Dhungana, M., Sahani, S., & Bhattarai, B. (2021). Seed quality improvement to approach sustainable yield of field crops by various preparation techniques: Seed priming, treatment and inoculation_A review. Plant Physiology and Soil Chemistry, 1(1), 12–20. https://doi.org/10.26480/ppsc.01.2021.12.20

Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

Singh, V. P., Date, I. M., & Sharma, J. D. (2024). A review on waste carbon soot as a functional material for water remediation. International Journal of Environmental Science and Technology, 22, 2793–2808. https://doi.org/10.1007/s13762-024-05886-0

Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428

Tamimi, S. M. (2024). The efficiency of seed priming with dead sea water for improving germination and early seedling growth of wheat (Triticum aestivum L.) under salinity. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 343–358. https://doi.org/10.20961/carakatani.v39i2.87161

Tan, S., Cao, J., Li, S., & Li, Z. (2025). Unraveling the mechanistic basis for control of seed longevity. Plants, 14(5), 805. https://doi.org/10.3390/plants14050805

Towett, E. K., Shepherd, K. D., & Lee Drake, B. (2016). Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: Quantification under different analytical parameters. X-Ray Spectrometry, 45(2), 117–124. https://doi.org/10.1002/xrs.2678

Ullah, A., Sadaf, S., Ullah, S., Alshaya, H., Okla, M. K., Alwasel, Y. A., & Tariq, A. (2022). Using halothermal time model to describe barley (Hordeum vulgare L.) seed germination response to water potential and temperature. Life, 12(2), 209. https://doi.org/10.3390/life12020209

Wang, L., Yang, X., Wang, Q., Zeng, Y., Ding, L., & Jiang, W. (2017). Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes. Journal of Environmental Sciences, 51, 248–255. https://doi.org/10.1016/j.jes.2016.07.003

Wang, M., Sun, G., Li, G., Hu, G., Fu, L., Hu, S., ... & Gu, W. (2024). Effects of multi walled carbon nanotubes and nano-SiO2 on key enzymes for seed germination and endogenous hormone level in maize seedling. Agronomy, 14(12), 2908. https://doi.org/10.3390/agronomy14122908

Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. Journal of Nanoparticle Research, 14(6), 841. https://doi.org/10.1007/s11051-012-0841-5

Yadav, D., Das, S., Dhillayan, D., Yadav, S., & Bhukal, S. (2025). Environmentally benign nanotechnology: Transforming elements into nano-agrochemicals for sustainable farming. Discover Agriculture, 3, 67. https://doi.org/10.1007/s44279-025-00224-5

Yang, Y., Wang, G., Li, G., Ma, R., Kong, Y., & Yuan, J. (2021). Selection of sensitive seeds for evaluation of compost maturity with the seed germination index. Waste Management, 136, 238–243. https://doi.org/10.1016/j.wasman.2021.09.037

Yi, L. W., Krishnamoorthy, S., Mohammad, Y. H., Hassan, U. H., Abidin, K. M., & Metali, F. (2025). Enhancing germination and early growth of curly lettuce using fermented liquid extract of Padina australis Hauck. Caraka Tani: Journal of Sustainable Agriculture, 40(2), 197–208. https://doi.org/10.20961/carakatani.v40i2.94086

Zaim, N. S. H. B. H., Tan, H. L., Rahman, S. M. A., Abu Bakar, N. F., Osman, M. S., Thakur, V. K., & Radacsi, N. (2023). Recent advances in seed coating treatment using nanoparticles and nanofibers for enhanced seed germination and protection. Journal of Plant Growth Regulation, 42(12), 7374–7402. https://doi.org/10.1007/s00344-023-11038-4

Zhang, K., Wang, Y., Mao, J., & Chen, B. (2020). Effects of biochar nanoparticles on seed germination and seedling growth. Environmental Pollution, 256, 113409. https://doi.org/10.1016/j.envpol.2019.113409

Zhang, M., Gao, B., Chen, J., & Li, Y. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17, 78. https://doi.org/10.1007/s11051-015-2885-9

Zvinavashe, A. T., Lim, E., Sun, H., & Marelli, B. (2019). A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity. Proceedings of the National Academy of Sciences of the United States of America, 116, 51. https://doi.org/10.1073/pnas.1915902116

Refbacks

  • There are currently no refbacks.