Physiological Responses, Growth, and Yield of Soybean (Glycine max L.) Between Rows of IP-1 Oil Palm in Response to Rhizobium sp. and Bacillus spp. Inoculation
Abstract
The Indonesian population has not yet met the high demand for soybeans by domestic production. Researchers aim to increase soybean (Glycine max L.) production and optimize land use through intercropping with oil palm during the immature plant phase 1 (IP-1). This study evaluated the effectiveness of Rhizobium sp. and Bacillus spp. inoculation in enhancing the growth and yield capacity (physiological activity, growth, and productivity) of soybeans planted between rows of IP-1 oil palms at PT Perkebunan Nusantara (PTPN) IV, Serdang Bedagai Regency, North Sumatera. The field study employed a factorial randomized complete block design (RCBD) with two factors and four blocks as replicates. Data from the experiments were analyzed using analysis of variance (ANOVA), least significant difference (LSD) testing at a 5% significance level, Spearman correlation, and structural equation modeling (SEM). The results showed an interaction effect between Rhizobium sp. and Bacillus spp. inoculation on the treatment variables of plant height, number of leaves, total dry weight, nutrient uptake (N, P, and K), IAA and GA3 hormones, total Bacillus in soil, total Bacillus in roots, pod dry weight, and yield. In treatment without Rhizobium sp., soybean plants inoculated with Bacillus spp. showed a significant contribution to all treatment variables. However, in soybean plants inoculated with Rhizobium sp., the addition of Bacillus spp. did not significantly affect the physiological activity, growth, and yield of soybeans. The performance of Bacillus spp. in boosting the physiological capacity and development of soybeans slowed down in the presence of Rhizobium sp. This indicated a potential antagonistic relationship between Bacillus spp. and Rhizobium sp.
Keywords
Full Text:
PDFReferences
Abdiev, A., Khaitov, B., Toderich, K., & Park, K. W. (2019). Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinum L.) enhanced by Rhizobium and Azotobacter inoculations in saline soil. Journal of Plant Nutrition, 42(20), 2703–2714. https://doi.org/10.1080/01904167.2019.1655038
Adams, M. A., Turnbull, T. L., Sprent, J. I., & Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences, 113(15), 4098–4103. https://doi.org/10.1073/pnas.1523936113
Amaral, D. F., de Souza Ferreira Filho, J. B., Chagas, A. L. S., & Adami, M. (2021). Expansion of soybean farming into deforested areas in the Amazon biome: The role and impact of the soy moratorium. Sustainability Science, 16(4), 1295–1312. https://doi.org/10.1007/s11625-021-00942-x
Amoanimaa-Dede, H., Su, C., Yeboah, A., Zhou, H., Zheng, D., & Zhu, H. (2022). Growth regulators promote soybean productivity: A review. PeerJ, 10, e12556. http://doi.org/10.7717/peerj.12556
Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088
Araújo, F. F. D., & Hungria, M. (1999). Nodulação e rendimento de soja co-infectada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhizobium elkanii. Pesquisa Agropecuária Brasileira, 34, 1633–1643. https://doi.org/10.1590/S0100-204X1999000900014
Araujo, F. F., Bonifacio, A., Bavaresco, L. G., Mendes, L. W., & Araujo, A. S. F. (2021). Bacillus subtilis changes the root architecture of soybeans grown on nutrient-poor substrate. Rhizosphere, 18, 100348. https://doi.org/10.1016/j.rhisph.2021.100348
Barakat, I., Chtaina, N., Caidi, K., & Bentata, F. (2024). Biocontrol of grey mold on strawberry fruit by Bacillus spp. and study of the mechanisms involved. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 311–320. https://doi.org/10.20961/carakatani.v39i2.84399
Bavaresco, L. G., Osco, L. P., Araujo, A. S. F., Mendes, L. W., Bonifacio, A., & Araujo, F. F. (2020). Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology, 32(2), 99–108. https://doi.org/10.1007/s40626-020-00173-y
Borsari, A. C. P., & Vieira, L. C. (2022). Mercado e perspectivas dos bioinsumos no Brasil. Bioinsumos na cultura da soja, pp. 39–52. Retrieved from https://scholar.google.co.id/scholar?cluster=15082794782220801074&hl=id&as_sdt=2005&sciodt=0,5
Cahyadi, M. D. P. A., Tarjoko, T., & Purwanto, P. (2021). Pengaruh ketinggian tempat terhadap sifat fisiologi dan hasil kopi arabika (Coffea arabica) di dataran tinggi Desa Sarwodadi Kecamatan Pejawaran Kabupaten Banjarnegara. Jurnal Ilmiah Media Agrosains, 7(1), 1–7. Retrieved from https://repository.polteklpp.ac.id/id/eprint/3427
Center for Agricultural Plant Protection. (2021). Petunjuk teknis budidaya tanaman kedelai. Retrieved from http://repository.pertanian.go.id/bitstream/handle/123456789/15323/juknis%20kedelai%20%281%29.pdf?sequence=1&isAllowed=y
Chaudhary, T., & Shukla, P. (2019). Bioinoculant capability enhancement through metabolomics and systems biology approaches. Briefings in Functional Genomics, 18(3), 159–168. https://doi.org/10.1093/bfgp/elz011
Costa, E., Carvalho, F., Esteves, J., Nóbrega, R., & Moreira, F. M. (2014). Resposta da soja a inoculação e co-inoculação com bactérias promotoras do crescimento vegetal e Bradyrhizobium. Enciclopédia Biosfera, 10(19), 1678–1689. Retrieved from https://www.conhecer.org.br/ojs/index.php/biosfera/article/view/2405
Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8, 31. https://doi.org/10.1186/s40538-021-00230-x
Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887. https://doi.org/10.3389/fmicb.2017.01887
Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
Etesami, H., & Adl, S. M. (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation, pp. 147–203. Singapore: Springer. https://doi.org/10.1007/978-981-15-2576-6_9
Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Current Research in Biotechnology, 5, 100128. https://doi.org/10.1016/j.crbiot.2023.100128
Gowtham, H. G., Singh, B., Murali, M., Shilpa, N., Prasad, M., Aiyaz, M., ... & Niranjana, S. R. (2020). Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 234, 126422. https://doi.org/10.1016/j.micres.2020.126422
Hapsoh, Dini, I. R., & Muttakin, A. (2023). Application of organic materials, cellulitic microbes and NPK fertilizer on the growth and years of peanut (Arachis hypogaea L.). Jurnal Agrium, 20(3), 194–203. http://dx.doi.org/10.29103/agrium.v20i3.12836
Hashem, A., Tabassum, B., & Abd-Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
He, J., Jin, Y., Du, Y. L., Wang, T., Turner, N. C., Yang, R. P., ... & Li, F. M. (2017). Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Frontiers in plant science, 8, 1499. https://doi.org/10.3389/fpls.2017.01499
Hossain, M. M. (2024). Utilization of Stenotrophomonas koreensis and Bacillus amyloliquefaciens for improving growth, reducing nitrogen fertilization and controlling Bipolaris sorokiniana in Wheat. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 81–93. https://doi.org/10.20961/carakatani.v39i1.79208
Husna, M., Sugiyanta, S., & Pratiwi, E. (2019). Kemampuan konsorsium Bacillus pada pupuk hayati dalam memfiksasi N2, melarutkan fosfat dan mensintesis fitohormon Indole 3-Acetic-Acid. Jurnal Tanah dan Iklim, 43(2), 117–125. Retrieved from https://epublikasi.pertanian.go.id/berkala/jti/article/view/3248
Indonesian Soil and Fertilizer Instrument Standard Testing Center. (2023). Technical instructions for chemical analysis of soil, plants, water and fertilizer. Retrieved from https://bit.ly/JUKNISTANAHEDISIBARU
Junior, G. M. B., Chagas, L. F. B., Amaral, L. R. O., Miller, L. O., & Junior, A. F. C. (2018). Efficiency of inoculation by Bacillus subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias, 13(4), 1–6. https://doi.org/10.5039/agraria.v13i4a5571
Kang, S. M., Khan, A. L., Waqas, M., Asaf, S., Lee, K. E., Park, Y. G., ... & Lee, I. J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14(1), 416–423. https://doi.org/10.1080/17429145.2019.1640294
Karmawati, E., Suhesti, S., & Yuniyati, N. (2020). Integrasi tanaman kelapa sawit dan pangan mendukung program peremajaan kelapa sawit menuju perkebunan berkelanjutan (pp. 67–79). Plantation Research and Development Center. Retrieved from https://repository.pertanian.go.id/server/api/core/bitstreams/2e363234-5ed4-44e4-93c7-ce37902e2adb/content
Khaeruni, A., & Rahman, A. (2012). Penggunaan bakteri kitinolitik sebagai agens biokontrol penyakit busuk batang oleh Rhizoctonia solani pada tanaman kedelai. Jurnal Fitopatologi Indonesia, 8(2), 37–37. Retrieved from https://pdfs.semanticscholar.org/1a3b/7411868dab5b71e60296c01d53b8d62a9496.pdf
Khan, A. R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z. F., Gondal, A. S., ... & Daraz, U. (2022). Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology, 11(12), 1763. https://doi.org/10.3390/biology11121763
Khan, K., & Mazid, M. (2018). Chickpea responses to application of plant growth regulators, organics and nutrients. Advances in Plants and Agriculture Research, 8(3), 259–273. https://doi.org/10.15406/apar.2018.08.00326
Kumar, S., Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094
Li, X., Zeng, R., & Liao, H. (2016). Improving crop nutrient efficiency through root architecture modifications. Journal of Integrative Plant Biology, 58(3), 193–202. https://doi.org/10.1111/jipb.12434
Lima, E. F., Costa Neto, V. P., Araujo, J. M., Alcaˆntara, Neto F., Bonifacio, A., & Rodrigues, A. C. (2016). Varieties of lima bean show different growth responses when inoculated with Bacillus sp., a plant growth-promoting bacteria. Bioscience Journal, 32(5), 1221–1233. https://doi.org/10.14393/BJ-v32n5a2016-32932
Liu, C., Feng, N., Zheng, D., Cui, H., Sun, F., & Gong, X. (2019). Uniconazole and diethyl aminoethyl hexanoate increase soybean pod setting and yield by regulating sucrose and starch content. Journal of the Science of Food and Agriculture, 99(2), 748–758. https://doi.org/10.1002/jsfa.9243
Lopes, J. I., Gonçalves, A., Brito, C., Martins, S., Pinto, L., Moutinho-Pereira, J., ... & Correia, C. M. (2021). Inorganic fertilization at high N rate increased olive yield of a rainfed orchard but reduced soil organic matter in comparison to three organic amendments. Agronomy, 11(11), 2172. https://doi.org/10.3390/agronomy11112172
Ministry of Agriculture. (2023). Soybean production. Retrieved from https://databoks.katadata.co.id/datapublish/2023/06/04/produksi-kedelaidiproyeksi-turun-hingga-2024
Mirriam, A., Mugwe, J., Nasar, J., Kisaka, O., Ranjan, S., & Gitari, H. (2023). Role of phosphorus and inoculation with Bradyrhizobium in enhancing soybean production. Advances in Agriculture, 2023(1), 3231623. https://doi.org/10.1155/2023/3231623
Müller, M., & Munné-Bosch, S. (2021). Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiology, 185(4), 1500–1522. https://doi.org/10.1093/plphys/kiaa119
Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, C. (2018). Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. https://doi.org/10.3390/ijms20040799
Oikawa, S., & Ainsworth, E. A. (2016). Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient. Environmental Pollution, 215, 347–355. https://doi.org/10.1016/j.envpol.2016.05.005
Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., & Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of The Total Environment, 743, 140682. https://doi.org/10.1016/j.scitotenv.2020.140682
Poudel, S., Vennam, R. R., Shrestha, A., Reddy, K. R., Wijewardane, N. K., Reddy, K. N., & Bheemanahalli, R. (2023). Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Scientific Reports, 13(1), 1277. https://doi.org/10.1038/s41598-023-28354-0
Preiner, S., Dai, Y., Pucher, M., Reitsema, R. E., Schoelynck, J., Meire, P., & Hein, T. (2020). Effects of macrophytes on ecosystem metabolism and net nutrient uptake in a groundwater fed lowland river. Science of The Total Environment, 721, 137620. https://doi.org/10.1016/j.scitotenv.2020.137620
Puspita, F., Saputra, S. I., & Merini, J. (2018). Uji beberapa konsentrasi bakteri Bacillus sp. endofit untuk meningkatkan pertumbuhan bibit kakao (Theobroma cacao L.). Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 46(3), 322–327. https://doi.org/10.24831/jai.v46i3.16342
Rademacher, W. (2015). Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34, 845–872. https://doi.org/10.1007/s00344-015-9541-6
Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in physiology, 8, 667. https://doi.org/10.3389/fphys.2017.00667
Ray, P., Lakshmanan, V., Labbé, J. L., & Craven, K. D. (2020). Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Frontiers in Microbiology, 11, 622926. https://doi.org/10.3389/fmicb.2020.622926
Rini, I. A., Oktaviani, I., Asril, M., Agustin, R., & Frima, F. K. (2020). Isolasi dan karakterisasi bakteri penghasil IAA (Indole Acetic Acid) dari rhizosfer tanaman akasia (Acacia mangium). Agro Bali: Agricultural Journal, 3(2), 210–219. https://doi.org/10.37637/ab.v3i2.619
Sarwendah, M. (2015). Kajian pertumbuhan dan hasil beberapa tanaman sela sistem tumpangsari pada kawasan perkebunan kelapa sawit TBM 3 (Thesis). Yogyakarta: Universitas Gadjah Mada. Retrieved from https://etd.repository.ugm.ac.id/penelitian/detail/84307
Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583–1594. https://doi.org/10.1111/jam.14506
Singh, B. N., Hidangmayum, A., Singh, A., Shera, S. S., & Dwivedi, P. (2019). Secondary metabolites of plant growth promoting rhizomicroorganisms. The Gateway: Springer Nature Singapore Private Limited. Retrieved from https://link.springer.com/book/10.1007/978-981-13-5862-3
Singh, S., & Singh, V. (2023). Phosphorus flow in production of soy protein concentrate and isolate from defatted soybean flour. Journal of the American Oil Chemists’ Society, 100(12), 985–991. https://doi.org/10.1002/aocs.12726
Sohibi, I., Marsuni, Y., & Liestiany, E. (2023). Uji antagonis Bacillus sp. dan Pseudomonas berfluorescens dari PGPR akar bambu dalam menekan penyakit layu bakteri Ralstonia solanacearum pada tomat. Jurnal Proteksi Tanaman Tropika, 6(1), 573–580. https://doi.org/10.20527/jptt.v6i1.1693
Soverda, N., Evita, E., & Megawati, M. (2021). Pengaruh Clibadium surinamense dan rhizobium terhadap pertumbuhan dan produksi kedelai edamame. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 5(2), 180–192. https://doi.org/10.22437/jiituj.v5i2.15953
Su, X., Li, G., Cotner, J. B., Wei, L., Wang, Y., Pan, T., & Ding, K. (2021). Long-term organic fertilization changes soil active bacterial composition and multifunctionality: RNA-based bacterial community and qPCR-based SmartChip analysis. Journal of Soils and Sediments, 21, 799–809. https://doi.org/10.1007/s11368-020-02854-2
Tonelli, M. L., Magallanes-Noguera, C., & Fabra, A. (2017). Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109. Archives of microbiology, 199, 1283–1291. https://doi.org/10.1007/s00203-017-1401-2
Tsotetsi, T., Nephali, L., Malebe, M., & Tugizimana, F. (2021). Bacillus for plant growth promotion and stress resilience: What have We learned? Plants, 11(19), 2482. https://doi.org/10.3390/plants11192482
Wagi, S., & Ahmed, A. (2019). Bacillus spp.: Potent microfactories of bacterial IAA. PeerJ, 7, e7258. https://doi.org/10.7717/peerj.7258
Wang, Y., Cao, Y., Feng, G., Li, X., Zhu, L., Liu, S., ... & Gao, Q. (2020). Integrated soil–crop system management with organic fertilizer achieves sustainable high maize yield and nitrogen use efficiency in Northeast China based on an 11-year field study. Agronomy, 10(8), 1078. https://doi.org/10.3390/agronomy10081078
Widawati, S., Suliasih, S., & Saefudin, S. (2015). Isolasi dan uji efektivitas plant growth promoting rhizobacteria di lahan marginal pada pertumbuhan tanaman kedelai (Glycine max L. Merr.) var. Wilis. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(1), 59–65. https://doi.org/10.13057/psnmbi/m010109
Widiatningrum, T. (2023). Karakterisasi transporter nitrogen, fosfor, dan kalium dari Rhizobium untuk tanaman. Prosiding Seminar Nasional Biologi, 11, 164–170. Retrieved from https://proceeding.unnes.ac.id/semnasbiologi/article/view/2724
Zanatta, T. S. C., Manica-Berto, R., Ferreira, C. D., Cardozo, M. M. C., Rombaldi, C. V., Zambiazi, R. C., & Dias, A. R. G. (2017). Phosphate fertilizer and growing environment change the phytochemicals, oil quality, and nutritional composition of roundup ready genetically modified and conventional soybean. Journal of Agricultural and Food Chemistry, 65(13), 2661–2669. https://doi.org/10.1021/acs.jafc.6b05499
Zeffa, D. M., Fantin, L. H., Koltun, A., de Oliveira, A. L., Nunes, M. P., Canteri, M. G., & Gonçalves, L. S. (2020). Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: A meta-analysis of studies from 1987 to 2018. PeerJ, 8, e7905. https://doi.org/10.7717/peerj.7905
Zohaib, A., Yousaf, S., Anjum, S. A., Tabassum, T., Abbas, T., Muzaffar, W., & Ikram, W. (2019). Growth, allometry and dry matter yield of soybean genotypes in response to seed inoculation with plant growth promoting rhizobacteria. Pakistan Journal of Agricultural Research, 32(1), 102–109. http://dx.doi.org/10.17582/journal.pjar/2019/32.1.102.109
Zubair, M., Hanif, A., Farzand, A., Sheikh, T. M. M., Khan, A. R., Suleman, M., ... & Gao, X. (2019). Genetic screening and expression analysis of psychrophilic Bacillus sp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 7(9), 337. https://doi.org/10.3390/microorganisms7090337
Refbacks
- There are currently no refbacks.