Yield Trial of Doubled-Haploid Rice Lines with Multiple Abiotic Stress Tolerance

Hayu Widi Yuana, Bambang Sapta Purwoko, Willy Bayuardi Suwarno, Iswari Saraswati Dewi, Cucu Gunarsih

Abstract

Rice production is facing a decline due to climate change and land conversion. The development of high-yielding and multi-tolerant abiotic stress rice varieties (such as drought, salinity, and flooding) is needed for adaptation to a changing climate. This research aimed to identify potential doubled-haploid (DH) rice lines with good agronomic performance and high yield through index selection. The study was conducted in the rainy season of 2024, and used a randomized complete block design with a single genotype factor and three replications. The genetic material evaluated consisted of 56 DH rice lines and 5 check varieties, i.e., Inpari 18, Inpari 30, Inpari 34, Inpari 35, and Ciherang. Observation was conducted on plant height (PH), number of vegetative tillers (NVT), number of productive tillers (NPT), days to 50% flowering (DF), days to harvesting (DTH), number of filled grains (NFG), total grains per panicle (TG), panicle length (PL), and productivity. The results showed high heritability in all observed variables, indicating that the variables could be used as selection criteria. The weighted index selection involving PH, NPT, DTH, and productivity resulted in 30 DH rice lines with good agronomic traits such as medium PH, medium NPT, medium maturity, and productivity above the check varieties. Those selected DH lines can be evaluated further in more diverse environments to study the effects of genotype, environment, and G×E interactions.

Keywords

anther culture; climate change; heritability; index selection; productivity

Full Text:

PDF

References

Abebe, T., Alamerew, S., & Tulu, L. (2017). Genetic variability, heritability and genetic advance for yield and its related traits in rainfed lowland rice (Oryza sativa L.) genotypes at Fogera and Pawe, Ethiopia. Advances in Crop Science and Technology, 5(2), 272. https://doi.org/10.4172/2329-8863.1000272

Agata, A., Ando, K., Ota, S., Kojima, M., Takebayashi, Y., Takehara, S., ..., & Hobo, T. (2020). Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Communications Biology, 3(1), 302. https://doi.org/10.1038/s42003-020-1036-8

Akbar, M. R., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Sugiyanta. (2018). Agronomic and drought tolerance evaluation of doubled haploid rice breeding lines derived from anther culture. SABRAO Journal of Breeding and Genetics, 50(2), 115–128. Retrieved from https://sabraojournal.org/wp-content/uploads/2018/06/SABRAO-J-Breed-Genet-50-2-115-128-AKBAR.pdf

Akbar, M. R., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., Sugiyanta, & Anshori, M. F. (2021). Agronomic and yield selection of doubled haploid lines of rainfed lowland rice in advanced yield trials. Biodiversitas, 22(7), 3006–3012. https://doi.org/10.13057/biodiv/d220754

Alsabah, R., Purwoko, B. S., Dewi, I. S., & Wahyu, Y. (2019). Selection index for selecting promising doubled haploid lines of black rice. SABRAO Journal of Breeding and Genetics, 51(4), 430–441. Retrieved from https://sabraojournal.org/wp-content/uploads/2020/01/SABRAO-J-Breed-Genet-514-430-441-Purwoko.pdf

Anshori, M. F., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Ardie, S. W. (2022). Salinity tolerance selection of doubled-haploid rice lines based on selection index and factor analysis. AIMS Agriculture & Food, 7(3), 520–535. https://doi.org/10.3934/agrfood.2022032

Anshori, M. F., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Ardie, S. W. (2023). Systematic selection to adaptive doubled haploid rice lines under different environments of submergence screening methods. Journal of Agriculture and Food Research, 14, 100775. https://doi.org/10.1016/j.jafr.2023.100775

Burlando, B., & Cornara, L. (2014). Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update. Trends in Food Science & Technology, 40(1), 82–98. https://doi.org/10.1016/j.tifs.2014.08.002

Das, K., Panda, B. B., Shaw, B. P., Das, S. R., Dash, S. K., Kariali, E., & Mohapatra, P. K. (2018). Grain density and its impact on grain filling characteristic of rice: Mechanistic testing of the concept in genetically related cultivars. Scientific Reports, 8(1), 4149. https://doi.org/10.1038/s41598-018-22256-2

Dongling, J., Wenhui, X., Zhiwei, S., Lijun, L., Junfei, G., Hao, Z., ..., & Jianchang, Y. (2023). Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Science, 30(6), 598–612. https://doi.org/10.1016/j.rsci.2023.06.003

Eckardt, N. A., Cutler, S., Juenger, T. E., Marshall-Colon, A., Udvardi, M., & Verslues, P. E. (2023). Focus on climate change and plant abiotic stress biology. Plant Cell, 35(1), 1–3. https://doi.org/10.1093/plcell/koac329

Falconer, D. S. (1989). Introduction to quantitative genetics. London, United Kingdom: Longman. Retrieved from https://scholar.google.co.id/scholar?cites=3419458208948002144&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

FAO. (2023). Crops and livestock products. Food and Agriculture Organization. Retrieved from https://www.fao.org/faostat/en/#data/QCL/visualize

Fatimah, Prasetiyono, J., Dadang, A., & Tasliah. (2014). Improvement of early maturity in rice variety by marker assisted backcross breeding of Hd2 gene. Indonesian Journal of Agricultural Science, 15(2), 55–64. Retrieved from https://repository.pertanian.go.id/server/api/core/bitstreams/715ff276-d550-43f5-a5a0-10fa0017275f/content

Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368–375. https://doi.org/10.1016/j.tplants.2007.06.007

Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2–S3. https://doi.org/10.3177/jnsv.65.S2

Ghosh, B., Ali Md, N., & Gantait, S. (2016). Response of rice under salinity stress: A review update. Rice Research, 4(2), 1000167. https://doi.org/10.4172/2375-4338.1000167

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. United States of America: John wiley & sons. Retrieved from https://scholar.google.co.id/scholar?cites=14957946235125646981&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Gunarsih, C. (2022). Multi toleransi terhadap cekaman abiotik pada galur-galur dihaploid padi sawah hasil kultur antera (Doctoral Thesis). Bogor, Indonesia: IPB University. Retrieved from https://repository.ipb.ac.id/handle/123456789/115382

Gunarsih, C., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Nafisah. (2022). Doubled haploid rice lines production through anther culture of F1 derived from abiotic stress tolerant parents. Sains Malaysiana, 51(12), 3937–3948. https://doi.org/10.17576/jsm-2022-5112-06

Hadianto, W., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Hidayat, P. (2023a). Selection index and agronomic characters of doubled haploid rice lines from anther culture. Biodiversitas, 24(3), 1511–1517. https://doi.org/10.13057/biodiv/d240321

Hadianto, W., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., Hidayat, P., & Lubis, I. (2023b). Agronomic performance, yield stability and selection of doubled haploid rice lines in advanced yield trials. AIMS Agriculture and Food, 8(4), 1010–1027. https://doi.org/10.3934/AGRFOOD.2023054

Hasegawa, T., Ishimaru, T., Kondo, M., Kuwagata, T., Yoshimoto, M., & Fukuoka, M. (2011). Spikelet sterility of rice observed in the record hot summer of 2007 and the factors associated with its variation. Journal of Agricultural Meteorology, 67(4), 225–232. https://doi.org/10.2480/agrmet.67.4.3

Hidayatullah, A., Purwoko, B. S., Dewi, I. S., & Suwarno, W. B. (2018). Agronomic performance and yield of doubled haploid rice lines in advanced yield trial. SABRAO Journal of Breeding and Genetics, 50(3), 242–253. Retrieved form https://sabraojournal.org/wp-content/uploads/2018/09/SABRAO-J-Breed-Genet-50-3-242-253-HIDAYATULLAH.pdf

Htwe, N. M., Aye, M., & Thu, C. N. (2020). Selection index for yield and yield contributing traits in improved rice genotypes. International Journal of Environmental and Rural Development, 11(2), 86–91. Retrieved from https://iserd.net/ijerd112/11-2-13.pdf

Indonesian Ministry of Agricultur. (2021). Rencana strategis Kementerian Pertanian tahun 2020-2024. Retrieved from https://rb.pertanian.go.id/upload/file/RENSTRA%20KEMENTAN%202020-2024%20REVISI%202%20(26%20Agt%202021).pdf

Indonesian Ministry of Agriculture. (2023). Agricultural statistics 2023. Center for Agricultural Data and Information System Ministry of Agriculture Republic of Indonesia. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Statistik_Pertanian_Tahun_2023.pdf

International Rice Research Institute. (2002). Standard Evaluation System for Rice (SES). International Rice Research Institute (IRRI). Retrieved from http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf

Islam, M., Kayess, O., Hasanuzzaman, M., Rahman, M., Uddin, M., & Zaman, M. (2016). Selection index for genetic improvement of wheat (Triticum aestivum L.). Journal of Chemical Biological and Physical Sciences, 7, 1–8. Retrieved from https://www.researchgate.net/publication/318030871_Selection_Index_for_Genetic_Improvement_of_Wheat_Triticum_aestivum_L

Karima, A. W., Putri, R. K., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Kurniawati, A. (2021). Selection of doubled haploid black rice lines in advanced yield trial based on multivariate analysis. Biodiversitas, 22(12), 5425–5431. https://doi.org/10.13057/biodiv/d221225

Khan, M. H., Dar, Z. A., & Dar, S. A. (2015). Breeding strategies for improving rice yield—a review. Agricultural Sciences, 6(5), 467–478. https://doi.org/10.4236/as.2015.65046

Kim, E. G., Jang, Y. H., Park, J. R., Wang, X. H., Jan, R., Farooq, M., ..., & Kim, K. M. (2024). OsCK q1 regulates heading date and grain weight in rice in response to day length. Rice, 17(1), 48. https://doi.org/10.1186/s12284-024-00726-8

Kumar, A., Dixit, S., Ram, T., Yadaw, R. B., Mishra, K. K., & Mandal, N. P. (2014). Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65(21), 6265–6278. https://doi.org/10.1093/jxb/eru363

Kumar, S., Tomar, A., Shekhar Azad, C., Kumar Kasana, R., Sonu Kumar, C., & Chauhan, M. (2018). Coefficient of variation (GCV & PCV), heritability and genetic advance analysis for yield contributing characters in rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 7(3), 2161–2164. Retrieved from https://www.phytojournal.com/archives/2018/vol7issue3/PartAC/7-3-336-838.pdf

Mayakaduwa, R., & Silva, T. (2023). Haploid induction in indica rice: Exploring new opportunities. Plants, 12, 3118. https://doi.org/10.3390/plants12173118

Mauro, G. D., Salvagiotti, F., Gambin, B. L., Condori, A., Gallo, S., Pozzi, R., Boxler, M., & Rotundo, J. L. (2022). Assessing the impact of high-input management for reducing soybean yield gaps on high-productivity farms. Field Crops Research, 278, 108434. https://doi.org/10.1016/j.fcr.2022.108434

Neog, P., Sarma, P. K., Chary, G. R., Dutta, S., Rajbongshi, R., Sarmah, K., ..., & Hazarika, G. N. (2016). Building climate resilient agriculture through traditional floating rice in flash flood affected areas of the North Bank Plains Zone of Assam. Indian Journal of Traditional Knowledge, 15(4), 632–638. Retrieved from https://nopr.niscpr.res.in/handle/123456789/35245

Nur, M., Kusdiyantini, E., Wuryanti, W., Winarni, T. A., Widyanto, S. A., & Muharam, H. (2015). Development of ozone technology rice storage systems (OTRISS) for quality improvement of rice production. Journal of Physics: Conference Series, 622(1), 012029. https://doi.org/10.1088/1742-6596/622/1/012029

Nurhidayah, S., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., Lubis, I., & Yuriyah, S. (2024). Resistance of doubled haploid rice lines with green super rice characters to bacterial leaf blight. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 381–395. http://dx.doi.org/10.20961/carakatani.v39i2.88198

Oladosu, Y., Rafii, M. Y., Magaji, U., Abdullah, N., Miah, G., Chukwu, S. C., ..., & Kareem, I. (2018). Genotypic and phenotypic relationship among yield components in rice under tropical conditions. BioMed Research International, 2018(1), 8936767. https://doi.org/10.1155/2018/8936767

Oladosu, Y., Rafii, M. Y., Samuel, C., Fatai, A., Magaji, U., Kareem, I., ..., & Kolapo, K. (2019). Drought resistance in rice from conventional to molecular breeding: A review. International Journal of Molecular Sciences, 20(14), 3519. https://doi.org/10.3390/ijms20143519

Panda, D., & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Science, 28(1), 43–57. https://doi.org/10.1016/j.rsci.2020.11.006

Pham, H., Reisner, J., Swift, A., Olafsson, S., & Vardeman, S. (2022). Crop phenotype prediction using biclustering to explain genotype-by-environment interactions. Frontiers in Plant Science, 13, 975976. https://doi.org/10.3389/fpls.2022.975976

Putri, R. K., Purwoko, B. S., Dewi, I. S., Lubis, I., & Yuriyah, S. (2023). Resistance of doubled haploid rice lines to bacterial leaf blight (Xanthomonas oryzae pv. oryzae). SABRAO Journal of Breeding and Genetics, 55(3), 717–728. https://doi.org/10.54910/sabrao2023.55.3.10

Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. https://doi.org/10.1016/j.rsci.2016.09.004

Regulation of the Minister of Agriculture of the Republic of Indonesia. (2022). Regulation of the Minister of Agriculture of the Republic of Indonesia number 13 of 2022 concerning the use of fertilizer doses of N, P, K, for rice, corn and soybeans in rice fields. Ministry of Agriculture of the Republic of Indonesia. Retrieved from https://www.fao.org/faolex/results/details/en/c/LEX-FAOC217792

Rohaeni, W. R., Suwarno, W. B., Susanto, U., Trikoesoemaningtyas, Ghulamahdi, M., & Aswidinnoor, H. (2023). Genetic diversity, heritability, and accumulation patterns of Zn content in biofortified rice. Biodiversitas, 24(1), 208–214. https://doi.org/10.13057/biodiv/d240125

Rumanti, I. A., Hairmansis, A., Nugraha, Y., Nafisah, Susanto, U., Wardana, P., ..., & Kato, Y. (2018). Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Research, 223, 75–82. https://doi.org/10.1016/j.fcr.2018.04.006

Sandhu, N., & Kumar, A. (2017). Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy, 7(2), 27. https://doi.org/10.3390/agronomy7020027

Sao, R., Sahu, P. K., Patel, R. S., Das, B. K., Jankuloski, L., & Sharma, D. (2022). Genetic improvement in plant architecture, maturity duration and agronomic traits of three traditional rice landraces through gamma ray-based induced mutagenesis. Plants, 11, 3448. https://doi.org/10.3390/plants11243448

Sarma, B., Kashtoh, H., Tamang, T. L., Bhattacharyya, P. N., Mohanta, Y. K., & Baek, K. (2023). Abiotic stress in rice: Visiting the physiological response and its tolerance mechanisms. Plants, 12, 3948. https://doi.org/10.3390/plants12233948

Shrestha, J., Subedi, S., Timsina, K. P., Subedi, S., Pandey, M., Shrestha, A., ..., & Hossain, M. A. (2021). Sustainable intensification in agriculture: an approach for making agriculture greener and productive. Journal of Nepal Agricultural Research Council, 7, 133–150. https://doi.org/10.3126/jnarc.v7i1.36937

Stansfield, W. D. (1991). Theory and problems of genetics. United States of America: McGraw-Hill. Retrieved from https://scholar.google.co.id/scholar?cites=13249985438903287298&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Statistics of Indonesia. (2020). Luas panen dan produksi padi di Indonesia 2019. Retrieved from https://www.bps.go.id/id/publication/2020/07/10/32247632fa792a2f3f28a644/ringkasan-eksekutif-luas-panen-dan-produksi-padi-di-indonesia-2019.html

Statistics of Indonesia. (2023). Luas panen dan produksi padi di Indonesia 2023 (angka sementara). Retrieved from https://www.bps.go.id/id/publication/2023/12/26/ce53879ed8c4bf48e833c373/ringkasan-eksekutif-luas-panen-dan-produksi-padi-di-indonesia-2023--angka-sementara-.html

Tuhina-Khatun, M., Hanafi, M. M., Rafii Yusop, M., Wong, M. Y., Salleh, F. M., & Ferdous, J. (2015). Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. BioMed Research International, 2015(1), 290861. https://doi.org/10.1155/2015/290861

Walpole, R. E. (1982). Introduction of statistics (3rd Edition). New York: United States of America: Macmillan Publishing Company, Inc. Retrieved from https://books.google.co.id/books/about/Introduction_to_Statistics.html?id=ls9FAQAAIAAJ&redir_esc=y

Wang, T., Jin, Y., Deng, L., Li, F., Wang, Z., Zhu, Y., ..., & Xu, G. (2024). The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. The Plant Cell, 36, 298–323. https://doi.org/10.1093/plcell/koad268

Yan, Y., Ding, C., Zhang, G., Hu, J., Zhu, L., Zeng, D., ..., & Ren, D. (2023). Genetic and environmental control of rice tillering. The Crop Journal, 11(5), 1287–1302. https://doi.org/10.1016/j.cj.2023.05.009

Refbacks

  • There are currently no refbacks.