Assessment of F₅ Mungbean Genotypes from Intergeneric Hybridization with Common Bean for Agronomic Performance, Heritability, Variance Components, and Genetic Uniformity

Binti Nur Aisah, Aprilia Tiara Ikhwani, Agus Budi Setiawan, Aziz Purwantoro, Dyah Weny Respatie, Erlina Ambarwati, Listy Anggraeni, Chee How Teo, Chandra Setyawan, Aniswatul Khamidah

Abstract

Genetic improvement in mungbean (Vigna radiata L. [Wilczek]) is constrained by its narrow genetic base. Introducing genetic material from common bean (Phaseolus vulgaris L.) through intergeneric hybridization offers a promising strategy for enhancing yield potential and advancing sustainable agriculture. However, limited studies have evaluated the agronomic performance and genetic parameters of progenies derived from such crosses. This study aimed to assess agronomic performance, estimate genetic parameters, and evaluate genetic uniformity in mungbean progenies, to identify superior lines for breeding programs. The field experiment was conducted using a randomized complete block design with four replicates. Five selected F₅ genotypes (C419, B423, B1922, B119, and B1124), along with the mungbean progenitor PKHPL-1, were evaluated. Traits assessed included vegetative, generative, and yield-related characteristics. Significant variation was observed among genotypes for yield-related traits, while plant height, number of flowers, and phenological traits showed relative uniformity. Genotype C419 exhibited the highest agronomic performance, with superior values in 100-seed weight, number of seeds per pod, seed weight per plant, and number of pods per plant. High heritability was recorded for pod length and 100-seed weight (90.63% and 90.32%, respectively), indicating strong genetic control and potential for effective selection. Principal component analysis confirmed the major contribution of these traits to yield variation. Furthermore, molecular analysis using IRAP markers revealed high genetic uniformity in genotype C419. These findings demonstrate the potential of intergeneric hybridization for enhancing yield-related traits in mungbean and identify genotype C419 as a promising line for future breeding efforts.

Keywords

intergeneric hybridization; IRAP marker; seed yield improvement; selection of mungbean lines; yield-related traits

Full Text:

PDF

References

Afza, H., Palupi, E. R., Herlina, L., & Ilyas, S. (2023). Genetic diversity and proximate analysis of Indonesian local mung bean (Vigna radiata). Biodiversitas Journal of Biological Diversity, 24(11), 6377–6388. https://doi.org/10.13057/biodiv/d241163

Aliyu, O. M., Tiamiyu, A. O., Usman, M., & Abdulkareem, Y. F. (2022). Variance components, correlation and path analyses in cowpea (Vigna unguiculata L., Walp). Journal of Crop Science and Biotechnology, 25(2), 173–182. https://doi.org/10.1007/s12892-021-00121-5

Awad-Allah, M. M., Shafie, W. W., Alsubeie, M. S., Alatawi, A., Safhi, F. A., ALshamrani, S. M., ..., & Masrahi, A. S. (2022). Utilization of genetic resources, genetic diversity and genetic variability for selecting new restorer lines of rice (Oryza sativa L.). Genes, 13(12), 2227. https://doi.org/10.3390/genes13122227

Barth, E., Resende, J. T. V. D., Moreira, A. F. P., Mariguele, K. H., Zeist, A. R., Silva, M. B., ..., & Youssef, K. (2020). Selection of experimental hybrids of strawberry using multivariate analysis. Agronomy, 10(4), 598. https://doi.org/10.3390/agronomy10040598

Boehm Jr, J. D., Abdel‐Haleem, H., Schapaugh Jr, W. T., Rainey, K., Pantalone, V. R., Shannon, G., ..., & Li, Z. (2019). Genetic improvement of US soybean in maturity groups V, VI, and VII. Crop Science, 59(5), 1838–1852. https://doi.org/10.2135/cropsci2018.10.0627

Burlyaeva, M., Vishnyakova, M., Gurkina, M., Kozlov, K., Lee, C. R., Ting, C. T., ..., & von Wettberg, E. (2019). Collections of mungbean [Vigna radiata) (L.) R. Wilczek] and urdbean [V. mungo (L.) Hepper] in Vavilov Institute (VIR): Traits diversity and trends in the breeding process over the last 100 years. Genetic Resources and Crop Evolution, 66(4), 767–781. https://doi.org/10.1007/s10722-019-00760-2

Castiano, B. U. L., Kimurto, P. K., & Ojwang, P. P. O. (2023). Combining ability of common bean (Phaseolus vulgaris) genotypes for root traits across diverse environments. Plant Breeding, 142(1), 74–85. https://doi.org/10.1111/pbr.13060

Chen, N. C., Baker, L. R., & Honma, S. (1983). Interspecific crossability among four species of Vigna food legumes. Euphytica, 32(3), 925–937. https://doi.org/10.1007/BF00042175

Edematie, V. E., Fatokun, C., Boukar, O., Adetimirin, V. O., & Kumar, P. L. (2021). Inheritance of pod length and other yield components in two cowpea and yard-long bean crosses. Agronomy, 11(4), 682. https://doi.org/10.3390/agronomy11040682

Esan, V. I., Oke, G. O., & Ogunbode, T. O. (2023). Genetic variation and characterization of Bambara groundnut [Vigna subterranea (L.) verdc.] accessions under multi-environments considering yield and yield components performance. Scientific Reports, 13(1), 1498. https://doi.org/10.1038/s41598-023-28794-8

Fatmawati, Y., Ilyas, Setiawan, A. B., Purwantoro, A., Respatie, D. W., & Teo, C. H. (2023). Genetic evaluation of F2 and F3 interspecific hybrids of mung bean (Vigna radiata L. Wilczek) using retrotransposon‐based insertion polymorphism and sequence‐related amplified polymorphism markers. Indonesian Journal of Biotechnology, 28(3), 143–152. https://doi.org/10.22146/ijbiotech.82760

Fatmawati, Y., Setiawan, A. B., Purwantoro, A., Respatie, D. W., & Teo, C. H. (2021). Analysis of genetic variability in F2 interspecific hybrids of mung bean (Vigna radiata) using inter-retrotransposon amplified polymorphism marker system. Biodiversitas Journal of Biological Diversity, 22(11), 4880–4889. https://doi.org/10.13057/biodiv/d221121

Faure, N., Serieys, H., Bervillé, A., Cazaux, E., & Kaan, F. (2002). Occurrence of partial hybrids in wide crosses between sunflower (Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theoretical and Applied Genetics, 104(4), 652–660. https://doi.org/10.1007/s001220100746

Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., ..., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238

Jain, V., & Sharma, S. (2021). Mungbean x ricebean and mungbean x urdbean interspecific lines are nutritionally comparable to mungbean cultivars. Journal of Food Composition and Analysis, 104, 104171. https://doi.org/10.1016/j.jfca.2021.104171

Kubota, D., Masunaga, T., Hermansah, Rasyidin, A., Hotta, M., Shinmura, Y., & Wakatsuki, T. (1998). Soil environment and tree species diversity in tropical rain forest, West Sumatra, Indonesia. Soils of Tropical Forest Ecosystems (pp. 159–167). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03649-5_18

Lashermes, P., Andrzejewski, S., Bertrand, B., Combes, M. C., Dussert, S., Graziosi, G., ..., & Anthony, F. (2000). Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theoretical and Applied Genetics, 100(1), 139–146. https://doi.org/10.1007/s001220050019

Li, M., Liu, Y., Wang, C., Yang, X., Li, D., Zhang, X., ..., & Zhao, L. (2020). Identification of traits contributing to high and stable yields in different soybean varieties across three Chinese latitudes. Frontiers in Plant Science, 10, 1642. https://doi.org/10.3389/fpls.2019.01642

Li, M., Wu, X., Wang, B., Wu, X., Wang, Y., Wang, J., ..., & Li, G. (2023). Genome-wide association analysis reveals the optimal genomic regions for pod size in bean. Frontiers in Plant Science, 14, 1138988. https://doi.org/10.3389/fpls.2023.1138988

Lim, I., Kang, M., Kim, B. C., & Ha, J. (2022). Metabolomic and transcriptomic changes in mungbean (Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. Frontiers in Plant Science, 13, 1030677. https://doi.org/10.3389/fpls.2022.1030677

Liu, B., Piao, H., Zhao, F., Zhao, J., Liu, Z., & Huang, B. (2004). DNA methylation changes in rice induced by Zizania latifolia (Griseb.) DNA introgression. Hereditas, 131(1), 75–78. https://doi.org/10.1111/j.1601-5223.1999.00075.x

Liu, M., & Li, Z.Y. (2007). Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa–type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome, 50(11), 985–993. https://doi.org/10.1139/G07-071

Madlung, A., & Comai, L. (2004). The effect of stress on genome regulation and structure. Annals of Botany, 94(4), 481–495. https://doi.org/10.1093/aob/mch172

Majidi, M. M., Mirlohi, A., & Amini, F. (2009). Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 167(3), 323–331. https://doi.org/10.1007/s10681-009-9887-6

Mbeyagala, E. K., Karimi, R., Binagwa, P. H., Amuge, E. S., Vemula, A. K., & Nair, R. M. (2023). Yield and mineral composition among mungbean [Vigna radiata (L.) R. Wilczek] genotypes grown in different agroecologies in East Africa. International Journal of Agronomy, 2023(1), 5534650. https://doi.org/10.1155/2023/5534650

Mwangi, J. W., Okoth, O. R., Kariuki, M. P., & Piero, N. M. (2021). Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilckzek) genotypes. Journal of Genetic Engineering and Biotechnology, 19(1), 142. https://doi.org/10.1186/s43141-021-00245-9

Nair, R. M., Pandey, A. K., War, A. R., Hanumantharao, B., Shwe, T., Alam, A. K. M. M., ..., & Schafleitner, R. (2019). Biotic and abiotic constraints in mungbean production—Progress in genetic improvement. Frontiers in Plant Science, 10, 1340. https://doi.org/10.3389/fpls.2019.01340

Pang, Y., Liu, C., Wang, D., Amand, P. S., Bernardo, A., Li, W., ..., & Liu, S. (2020). High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 13(9), 1311–1327. https://doi.org/10.1016/j.molp.2020.07.008

Parihar, A. K., Gupta, S., Hazra, K. K., Lamichaney, A., Sen Gupta, D., Singh, D., ..., & Das, S. (2022). Multi-location evaluation of mungbean (Vigna radiata L.) in Indian climates: Ecophenological dynamics, yield relation, and characterization of locations. Frontiers in Plant Science, 13, 984912. https://doi.org/10.3389/fpls.2022.984912

Pratap, A., Gupta, S., Basu, P. S., Tomar, R., Dubey, S., Rathore, M., ..., & Kumari, G. (2019). Towards development of climate smart mungbean: Challenges and opportunities. Genomic Designing of Climate-Smart Pulse Crops (pp. 235–264). Springer International Publishing. https://doi.org/10.1007/978-3-319-96932-9_5

Priya, C. S., & Babu, D. R. (2021). Genetic parameters of variation and character association for seed yield and its attributes in mungbean (Vigna radiata L. Wilczek). Legume Research, 47(3), 343–351. https://doi.org/10.18805/LR-4498

Rahmianna, A. A., Basuki, T., Kote, M., Seran, Y. L., & Rachaputi, R. C. N. (2021). Increasing productivity of mungbean (Vigna radiata (L.) Wilczek) under subsistence farming in Eastern Indonesia. IOP Conference Series: Earth and Environmental Science, 911(1), 012029. https://doi.org/10.1088/1755-1315/911/1/012029

Raina, A., & Khan, S. (2023). Field assessment of yield and its contributing traits in cowpea treated with lower, intermediate, and higher doses of gamma rays and sodium azide. Frontiers in Plant Science, 14, 1188077. https://doi.org/10.3389/fpls.2023.1188077

Ringnér, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303–304. https://doi.org/10.1038/nbt0308-303

Runemark, A., Vallejo-Marin, M., & Meier, J. I. (2019). Eukaryote hybrid genomes. PLOS Genetics, 15(11), e1008404. https://doi.org/10.1371/journal.pgen.1008404

Sadras, V. O., Lake, L., Kaur, S., & Rosewarne, G. (2019). Phenotypic and genetic analysis of pod wall ratio, phenology and yield components in field pea. Field Crops Research, 241, 107551. https://doi.org/10.1016/j.fcr.2019.06.008

Sequeros, T., Schreinemachers, P., Depenbusch, L., Shwe, T., & Nair, R. M. (2020). Impact and returns on investment of mungbean research and development in Myanmar. Agriculture & Food Security, 9(1), 5. https://doi.org/10.1186/s40066-020-00260-y

Sinha, M. K., Aski, M. S., Mishra, G. P., Kumar, M. A., Yadav, P. S., Tokas, J. P., ..., & Dikshit, H. K. (2023). Genome wide association analysis for grain micronutrients and anti-nutritional traits in mungbean [Vigna radiata (L.) R. Wilczek] using SNP markers. Frontiers in Nutrition, 10, 1099004. https://doi.org/10.3389/fnut.2023.1099004

Sokolkova, A., Burlyaeva, M., Valiannikova, T., Vishnyakova, M., Schafleitner, R., Lee, C. R., ..., & von Wettberg, E. (2020). Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan). BMC Plant Biology, 20, 363. https://doi.org/10.1186/s12870-020-02579-x

Ujianto, L., Basuki, N., Kuswanto, & Kasno, A. (2018). Successful Interspecific hybridization between mungbean (Vigna radiata L. Wilczek) and ricebean (V. umbellata (Thunb.) Ohwi and Ohashi). Legume Research, 42(1), 363. https://doi.org/10.18805/LR-433

Ukwu, U. N., Muller, O., Meier-Grüll, M., & Uguru, M. I. (2025). Agrivoltaics shading enhanced the microclimate, photosynthesis, growth and yields of Vigna radiata genotypes in tropical Nigeria. Scientific Reports, 15(1), 55–59. https://doi.org/10.1038/s41598-024-84216-3

Verma, P., Singh, G., Singh, S. K., Bakshi, M., Mirza, A. A., Anmol, Mehandi, S., & Vijayvargiya, V. (2025). Correlation, path-coefficient and principal component analysis association among quantitative traits in strawberry to unlock potential of vertical farming system. Kuwait Journal of Science, 52(1), 100303. https://doi.org/10.1016/j.kjs.2024.100303

Wang, Q., Li, X., Chen, H., Wang, F., Li, Z., Zuo, J., ..., & Wang, J. (2022). Mapping combined with principal component analysis identifies excellent lines with increased rice quality. Scientific Reports, 12(1), 5969. https://doi.org/10.1038/s41598-022-09976-2

Wu, X., Islam, A. S. M. F., Limpot, N., Mackasmiel, L., Mierzwa, J., Cortés, A. J., & Blair, M. W. (2020). Genome-wide SNP identification and association mapping for seed mineral concentration in mung bean (Vigna radiata L.). Frontiers in Genetics, 11, 656. https://doi.org/10.3389/fgene.2020.00656

Zaki, H. E. M., & Radwan, K. S. A. (2022). Estimates of genotypic and phenotypic variance, heritability, and genetic advance of horticultural traits in developed crosses of cowpea (Vigna unguiculata [L.] Walp). Frontiers in Plant Science, 13, 987985. https://doi.org/10.3389/fpls.2022.987985

Zhang, S., Li, B., Chen, Y., Shaibu, A. S., Zheng, H., & Sun, J. (2020). Molecular-assisted distinctness and uniformity testing using SLAF-sequencing approach in soybean. Genes, 11(2), 175. https://doi.org/10.3390/genes11020175

Zhang, X., Ge, X., Shao, Y., Sun, G., & Li, Z. (2013). Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in Brassica napus introgressions from two intertribal hybridizations. PLoS ONE, 8(2), e56346. https://doi.org/10.1371/journal.pone.0056346

Refbacks

  • There are currently no refbacks.