Enhancing Germination and Early Growth of Curly Lettuce Using Fermented Liquid Extract of Padina australis Hauck
Abstract
Fermented seaweed liquid extract serves as an affordable and eco-friendly nutrient supplement, biostimulant, or biofertilizer, effectively promoting crop growth and supporting sustainable agricultural practices. This study evaluates the effects of the fermented liquid extract of Padina australis (FLEP) at various concentrations (0, 2, 5, 10, 20, and 100%) on lettuce germination and early growth. Germination parameters were assessed over 14 days under controlled conditions, followed by consecutive greenhouse experiments that examined the impact of foliar FLEP spray on two-week-old seedlings over 21 days, measuring early growth parameters and foliar nutrient concentrations. All data were statistically analyzed using a one-way analysis of variance at a 5% significance level. Results revealed that the FLEP significantly improved the seedling vigor index and length at concentrations ranging from 2 to 20%. The relative growth rate (RGR) for height exhibited significant increases at the 2% and 5% FLEP concentrations, while RGR for leaves, shoot dry biomass, and leaf area demonstrated significant improvements at FLEP concentrations of 2 to 20%. Foliar P content, and not foliar N, was significantly affected by the FLEP treatments, with P levels typically increasing with higher FLEP concentrations. These findings suggest that applying FLEP, particularly at low concentrations (2% and 5%) as a foliar spray significantly enhances lettuce germination and growth. Furthermore, this study highlights the potential of the FLEP as a novel foliar biofertilizer.
Keywords
Full Text:
PDFReferences
Ali, N., Farrell, A., Ramsubhag, A., & Jayaraman, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of applied phycology, 28, 1353–1362. https://doi.org/10.1007/s10811-015-0608-3
Allen, S. E., Grimshaw, H. M., Parkinson, J. A., & Quarmby, C. (1989). Chemical analysis of ecological materials. Oxford, UK: Blackwell Scientific Publications. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/19750622636
Ammar, E. E., Aioub, A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020
AOAC. (2000). Official methods of analysis (17th Edition). Maryland, USA: Association of Official Agricultural Chemists. Official Methods 925.09, 936.03.
AOSA. (1983). Seed vigor testing handbook. Lincoln, USA: Association of Official Seed Analysts. Contribution No. 32. AOSA. Retrieved from https://scholar.google.co.id/scholar?cites=9265880965978783642&as_sdt=2005&sciodt=0,5&hl=id&authuser=3
Arokia rajan, M. S., Thriunavukkarasu, R., Joseph, J., & Aruni, W. (2020). Effect of seaweed on seed germination and biochemical constituents of Capsicum annuum. Biocatalysis and Agricultural Biotechnology, 29, 101761. https://doi.org/10.1016/j.bcab.2020.101761
Arthur, G. D., Aremu, A. O., Moyo, M., Stirk, W. A., & van Staden, J. (2013). Growth-promoting effects of seaweed concentrate at various pH and water hardness conditions. South African Journal of Science, 109(11), 6. https://doi.org/10.1590/sajs.2013/20120013
Atteya, A. K. G., El-Serafy, R. S., El-Zabalawy, K. M., Elhakem, A., & Genaidy, E. A. E. (2022). Brassinolide maximized the fruit and oil yield, induced the secondary metabolites, and stimulated linoleic acid synthesis of Opuntia ficus-indica oil. Horticulturae, 8(5), 452. https://doi.org/10.3390/horticulturae8050452
Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. http://dx.doi.org/10.1016/j.scienta.2015.09.012
Begho, T., Eory, V., & Glenk, K. (2022). Demystifying risk attitudes and fertilizer use: A review focusing on the behavioral factors associated with agricultural nitrogen emissions in South Asia. Frontiers in Sustainable Food Systems, 6, 991185. https://doi.org/10.3389/fsufs.2022.991185
Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866. https://doi.org/10.3390/agronomy10060866
Bijay-Singh, Muhammad Bilal, H., & Aziz, T. (2022). Chapter 7 - Nitrogen use efficiency in crop production: Issues and challenges in South Asia. Nitrogen Assessment: Pakistan as a Case-Study, pp. 127–148. https://doi.org/10.1016/B978-0-12-824417-3.00009-5
Blunden, G., Morse, P. F., Mathe, I., Hohmann, J., Critchley, A. T., & Morrell, S. (2010). Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Natural product communications, 5(4), 581–585. Retrieved from https://journals.sagepub.com/doi/pdf/10.1177/1934578X1000500418
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8
Chang, J., Havlík, P., Leclère, D., de Vries, W., Valin, H., Deppermann, A., Hasegawa, T., & Obersteiner, M. (2021). Reconciling regional nitrogen boundaries with global food security. Nature Food, 2(9), 700–711. https://doi.org/10.1038/s43016-021-00366-x
Chellappan, D. K., Chellian, J., Leong, J. Q., Liaw, Y. Y., Gupta, G., Dua, K., ... & Palaniveloo, K. (2020). Biological and therapeutic potential of the edible brown marine seaweed Padina australis and their pharmacological mechanisms. Journal of Tropical Biology & Conservation (JTBC), 17, 251–271. https://doi.org/10.51200/jtbc.v17i.2667
Dhankhar, N., & Kumar, J. (2023). Impact of increasing pesticides and fertilizers on human health: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.766
Di Filippo-Herrera, D. A., Muñoz-Ochoa, M., Hernández-Herrera, R. M., & Hernández-Carmona, G. (2019). Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. Journal of Applied Phycology, 31, 2025–2037. https://doi.org/10.1007/s10811-018-1680-2
DoAA. (2022). Agriculture and agrifood statistics 2022. Bandar Seri Begawan, Brunei Darussalam: Department of Agriculture and Agrifood. Retrieved from http://www.agriculture.gov.bn/SiteCollectionDocuments/Statistik/Agriculture%20%26%20Agrifood%20Statistics%20in%20Brief%202022.pdf
Getman‐Pickering, Z. L., Campbell, A., Aflitto, N., Grele, A., Davis, J. K., & Ugine, T. A. (2020). LeafByte: A mobile application that measures leaf area and herbivory quickly and accurately. Methods in Ecology and Evolution, 11(2), 215–221. https://doi.org/10.1111/2041-210X.13340
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/s10811-013-0078-4
Hines, S., van der Zwan, T., Shiell, K., Shotton, K., & Prithiviraj, B. (2021). Alkaline extract of the seaweed Ascophyllum nodosum stimulates arbuscular mycorrhizal fungi and their endomycorrhization of plant roots. Scientific Reports, 11(1), 13491. https://doi.org/10.1038/s41598-021-93035-9
Hoa, H. T. T., Duc, T. T., Tuyet, T. T. A., & ur Rehman, H. (2022). Efficiency of bio-foliar fertilizer extracted from seaweed and water hyacinth on lettuce (Lactuca sativa) vegetable in Central Vietnam. Pakistan Journal of Agricultural Sciences, 59(1), 1–7. https://doi.org/10.21162/PAKJAS/22.1257
Huda, M. N., Mannan, M. A., Bari, M. N., Rafiquzzaman, S. M., & Higuchi, H. (2023). Red seaweed liquid fertilizer increases growth, chlorophyll and yield of mungbean (Vigna radiata). Agronomy Research, 21(S1), 291–305. https://doi.org/10.15159/AR.23.011
Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90(4), 485–488. https://doi.org/10.1093/aob/mcf214
Jebasingh, S. E. J., Lakshmikandan, M., Vasanthakumar, P., & Sivaraman, K. (2015). Improved seedling growth and seed germination in legume crop Vigna mungo (L.) Hepper utilizing marine macroalgal extracts. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(2), 643–651. https://doi.org/10.1007/s40011-014-0374-z
Karthik, T., & Jayasri, M. A. (2023). Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (mung bean). Journal of Agriculture and Food Research, 14, 100748. https://doi.org/10.1016/j.jafr.2023.100748
Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., ... & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399. https://doi.org/10.1007/s00344-009-9103-x
Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251–255. https://doi.org/10.1007/s10811-011-9660-9
Mannan, M. A., Yasmin, A., Sarker, U., Bari, N., Dola, D. B., Higuchi, H., ... & Alarifi, S. (2023). Biostimulant red seaweed (Gracilaria tenuistipitata var. liui) extracts spray improves yield and drought tolerance in soybean. PeerJ, 11, e15588. https://doi.org/10.7717/peerj.15588
Monteiro, P., Lomartire, S., Cotas, J., Pacheco, D., Marques, J. C., Pereira, L., & Gonçalves, A. M. M. (2021). Seaweeds as a fermentation substrate: A challenge for the food processing industry. Processes, 9(11), 1953. https://doi.org/10.3390/pr9111953
Nasmia, R. E., Masyahoro, A., Putera, F. H. A., & Natsir, S. (2021). The utilization of seaweed-based liquid organic fertilizer to stimulate Gracilaria verrucosa growth and quality. International Journal of Environmental Science and Technology, 18, 1637–1644. https://doi.org/10.1007/s13762-020-02921-8
Nedumaran, T., & Arulbalachandran, D. (2015). Seaweeds: A promising source for sustainable development. Environmental Sustainability, pp. 65–88. Springer. https://doi.org/10.1007/978-81-322-2056-5_4
Orchard, T. J. (1977). Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1), 61–69. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/19770761287
Pangaribuan, D. H., Ginting, Y. C., Rugayah, Oktiya, R., & Zaheri, E. D. (2022). The effect of seaweed (Sargassum sp.) and plant extract combinations on the growth of mustard plant (Brassica juncea L.) grown in hydroponic wick system. Caraka Tani: Journal of Sustainable Agriculture, 37(2), 299–309. https://doi.org/10.20961/carakatani.v37i2.59668
Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ... & Cornelissen, J. H. C. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(3), 715–716. https://doi.org/10.1071/BT12225_CO
Pg Abdul Karim, D. N. R. A., Liew, A. W. Y., Abd Aziz, N. A. A., & Metali, F. (2021). Effect of organic mulches on the growth of lettuce (Lactuca sativa L.): Do types and forms of mulching materials matter?. E-Proceeding, The 7th Southeast Asian Agricultural Engineering Student Chapter Annual Regional Convention 2021 (ARC2021), pp. 155–162. Malaysia: Universiti Putra Malaysia Bintulu Sarawak. Retrieved from https://spel3.upm.edu.my/max/dokumen/ARC2021_E-Proceeding_ARC2021_eISBN.pdf
Pise, N. M., & Sabale, A. B. (2010). Effect of seaweed concentrates on the growth and biochemical constituents of Trigonella foenum-graecum L. Journal of Phytology, 2(4), 50–56. Retrieved from https://core.ac.uk/download/pdf/236017334.pdf
Pompelli, M. F., Jarma-Orozco, A., & Rodriguez-Páez, L. A. (2023). Imbibition and germination of seeds with economic and ecological interest: Physical and biochemical factors involved. Sustainability, 15(6), 5394. https://doi.org/10.3390/su15065394
Precision Business Insights. (2025). Lettuce market - Global industry insights, trends, outlook, and opportunity analysis. Retrieved from https://www.precisionbusinessinsights.com/market-reports/lettuce-market
R Core Team. (2023). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://scholar.google.co.id/scholar?cites=16055750848782808290&as_sdt=2005&sciodt=0,5&hl=id&authuser=3
Raghuram, N., Sutton, M. A., Jeffery, R., Ramachandran, R., & Adhya, T. K. (2021). From South Asia to the world: Embracing the challenge of global sustainable nitrogen management. One Earth, 4(1), 22–27. https://doi.org/10.1016/j.oneear.2020.12.017
Ramya, S. S., Vijayanand, N., & Rathinavel, S. (2015). Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. International Journal of Recycling of Organic Waste in Agriculture, 4, 167–173. https://doi.org/10.1007/s40093-015-0096-0
Rushdi, M. I., Abdel-Rahman, I. A. M., Saber, H., Attia, E. Z., Madkour, H. A., & Abdelmohsen, U. R. (2021). A review on the pharmacological potential of the genus Padina. South African Journal of Botany, 142, 37–48. https://doi.org/10.1016/j.sajb.2021.04.018
Small, C. C., & Degenhardt, D. (2018). Plant growth regulators for enhancing revegetation success in reclamation: A review. Ecological Engineering, 118, 43–51. https://doi.org/10.1016/j.ecoleng.2018.04.010
Tarchoun, N., Saadaoui, W., Mezghani, N., Pavli, O. I., Falleh, H., & Petropoulos, S. A. (2022). The effects of salt stress on germination, seedling growth and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants, 11(6), 800. https://doi.org/10.3390/plants11060800
Thirumaran, G., Arumugam, M., Arumugam, R., & Anantharaman, P. (2009). Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) medikus. American-Eurasian Journal of Agronomy, 2(2), 57–66. Retrieved from https://idosi.org/aeja/2(2)09/2.pdf
Tougaard, S. L., Szameitat, A., Møs, P., & Husted, S. (2023). Leaf age and light stress affect the ability to diagnose P status in field grown potatoes. Frontiers in Plant Science, 14, 1100318. https://doi.org/10.3389/fpls.2023.1100318
Tudela, J. A., Hernández, N., Pérez-Vicente, A., & Gil, M. I. (2017). Growing season climates affect quality of fresh-cut lettuce. Postharvest Biology and Technology, 123, 60–68. https://doi.org/10.1016/j.postharvbio.2016.08.013
Waqas, M. A., Hashemi, F., Mogensen, L., & Knudsen, M. T. (2024). Environmental performance of seaweed cultivation and use in different industries: A systematic review. Sustainable Production and Consumption, 48, 123–142. https://doi.org/10.1016/j.spc.2024.05.001
Waraich, E. A., Ahmad, Z., Ahmad, R., Saifullah, & Ashraf, M. Y. (2015). Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 38(12), 1929–1943. https://doi.org/10.1080/01904167.2015.1043377
Xu, J., Liao, W., Liu, Y., Guo, Y., Jiang, S., & Zhao, C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Production, Processing and Nutrition, 5(1), 18. https://doi.org/10.1186/s43014-023-00132-5
Yang, X., Gil, M. I., Yang, Q., & Tomás-Barberán, F. A. (2022). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety, 21(1), 4–45. https://doi.org/10.1111/1541-4337.12877
Youssef, S. M., El-Serafy, R. S., Ghanem, K. Z., Elhakem, A., & Abdel Aal, A. A. (2022). Foliar spray or soil drench: Microalgae application impacts on soil microbiology, morpho-physiological and biochemical responses, oil and fatty acid profiles of Chia plants under alkaline stress. Biology, 11(12), 1844. https://doi.org/10.3390/biology11121844
Zheng, S., Jiang, J., He, M., Zou, S., & Wang, C. (2016). Effect of kelp waste extracts on the growth and development of Pakchoi (Brassica chinensis L.). Scientific Reports, 6(1), 38683. https://doi.org/10.1038/srep38683
Refbacks
- There are currently no refbacks.