Genetic Variability in F2 Melon (Cucumis melo L.) Population from Double Cross of Sex-Distinct Parent Lines

Agus Budi Setiawan, Irna Auliauzzakia, Aziz Purwantoro

Abstract

Melon (Cucumis melo L.) is an economically significant crop in Indonesia. Due to the increasing demand for premium melon fruit with high sugar content, firm flesh, extended shelf life, bright peel and flesh color, and round fruit shapes, researchers developed melon lines that align with consumer preferences. This study aimed to determine the segregation pattern and genetic basis of sex expression in F1 and F2 populations, estimate genetic parameters for pericarp thickness and total soluble solids, and identify superior F2 genotypes using a predicted selection response based on a weighted selection index. A total of 137 F1 individuals derived from crossing ‘Inthanon RZ’ with ‘Glamour Sakata’ and 237 F2 individuals derived from the self-pollinated IG10 line were grown in a greenhouse using a hydroponic drip fertigation system. The F1 population exhibited genetic variation in sex expression based on the allele-specific marker of CmACS7, with a 1:1 phenotypic ratio, consisting of 68 monoecious and 69 andromonoecious individuals. All individuals in the F2 population showed homozygote andromonoecious expression, indicating that the IG10 progenitor line was homozygous (aaGG). Pericarp thickness and total soluble solids exhibited high phenotypic and genotypic coefficients of variation and moderate-to-high broad-sense heritability. Among the genotypes, four displayed high-weighted selection indices based on the two target traits, with IG10-124 achieving the highest selection index. The selection response based on the weighted selection index suggests that pericarp thickness and total soluble solids will show genetic improvement in the next generation.

Keywords

andromonoecious line; CmACS7 gene; genotype selection; melon breeding; monoecious line

Full Text:

PDF

References

Acquaah, G. (2012). Principles of plant genetics and breeding. Oxford, United Kingdom: Wiley. https://doi.org/10.1002/9781118313718

Adedugba, A. A., Adeyemo, O. A., Adetumbi, A. J., Amusa, O. D., & Ogunkanmi, L. A. (2023). Evaluation of genetic variability for major agro-morphological and stalk sugar traits in African sorghum genotypes. Heliyon, 9(3), e14622. https://doi.org/10.1016/j.heliyon.2023.e14622

Alahmad, S., Dinglasan, E., Leung, K. M., Riaz, A., Derbal, N., Voss-Fels, K. P., ..., & Hickey, L. T. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 14(1), 36. https://doi.org/10.1186/s13007-018-0302-y

Andrade, I. S., Melo, C. A. F. de, Nunes, G. H. de S., Holanda, I. S. A., Grangeiro, L. C., & Corrêa, R. X. (2021). Phenotypic variability, diversity and genetic-population structure in melon (Cucumis melo L.) associated with total soluble solids. Scientia Horticulturae, 278, 109844. https://doi.org/10.1016/j.scienta.2020.109844

Argyris, J. M., Díaz, A., Ruggieri, V., Fernández, M., Jahrmann, T., Gibon, Y., ..., & Garcia-Mas, J. (2017). QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Frontiers in Plant Science, 8, 1679. https://doi.org/10.3389/fpls.2017.01679

Asaduzzaman, Md., Talukder, Md. R., Tanaka, H., Ueno, M., Kawaguchi, M., Yano, S., ..., & Asao, T. (2018). Production of low-potassium content melon through hydroponic nutrient management using perlite substrate. Frontiers in Plant Science, 9, 1382. https://doi.org/10.3389/fpls.2018.01382

Baker, R. J. (1986). Selection indices in plant breeding. Boca Raton, USA: CRC Press. https://doi.org/10.1201/9780429280498

Boualem, A., Berthet, S., Devani, R. S., Camps, C., Fleurier, S., Morin, H., …, & Bendahmane, A. (2022). Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Current Biology, 32(11), 2390–2401. https://doi.org/10.1016/j.cub.2022.04.031

Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., …, & Bendahmane, A. (2008). A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science, 321(5890), 836–838. https://doi.org/10.1126/science.1159023

Boualem, A., Lemhemdi, A., Sari, M.-A., Pignoly, S., Troadec, C., Abou Choucha, F., ..., & Bendahmane, A. (2016). The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus Genera. PLoS ONE, 11(5), e0155444. https://doi.org/10.1371/journal.pone.0155444

Boualem, A., Troadec, C., Camps, C., Lemhemdi, A., Morin, H., Sari, M.-A., ..., & Bendahmane, A. (2015). A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 350(6261), 688–691. https://doi.org/10.1126/science.aac8370

Burton, G. W. (1951). Quantitative inheritance in pearl millet (Pennisetum glaucum). Agronomy Journal, 43(9), 409–417. https://doi.org/10.2134/agronj1951.00021962004300090001x

Burton, G. W., & DeVane, E. H. (1953). Estimating heritability in tall fescue (Festuca Arundinacea) from replicated clonal material. Agronomy Journal, 45(10), 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x

Ćeran, M., Miladinović, D., Đorđević, V., Trkulja, D., Radanović, A., Glogovac, S., & Kondić-Špika, A. (2024). Genomics-assisted speed breeding for crop improvement: Present and future. Frontiers in Sustainable Food Systems, 8, 1383302. https://doi.org/10.3389/fsufs.2024.1383302

Chaim, A. Ben, Borovsky, Y., Rao, G. U., Tanyolac, B., & Paran, I. (2003). fs3.1: A major fruit shape QTL conserved in Capsicum. Genome, 46(1), 1–9. https://doi.org/10.1139/g02-096

Chikh-Rouhou, H., Kienbaum, L., Gharib, A. H. A. M., Fayos, O., & Garcés-Claver, A. (2024). Combining ability and hybrid breeding in Tunisian melon (Cucumis melo L.) for fruit traits. Horticulturae, 10(7), 724. https://doi.org/10.3390/horticulturae10070724

Duong, T. T., Dung, T. P., Tanaka, K., Nhi, P. T. P., Shigita, G., Imoh, O. N., ..., & Kato, K. (2021). Distribution of two groups of melon landraces and inter-group hybridization enhanced genetic diversity in Vietnam. Breeding Science, 71(5), 564–574. https://doi.org/10.1270/JSBBS.20090

Eshghi, R., Ojaghi, J., & Salayeva, S. (2011). Genetic gain through selection indices in hulless barley. International Journal of Agriculture & Biology, 13, 191–197. Retrieved from https://api.fspublishers.org/published_papers/23579.pdf

Fita, A., Esteras, C., Picó, B., & Nuez, F. (2009). Cucumis melo L. new breeding lines tolerant to melon vine decline. HortScience, 44(7), 2022–2024. https://doi.org/10.21273/HORTSCI.44.7.2022

Fritsche‐Neto, R., Sabadin, F., DoVale, J. C., Borges, K. L. R., de Souza, P. H., Crossa, J., & Garbuglio, D. D. (2023). Realized genetic gains via recurrent selection in a tropical maize haploid inducer population and optimizing simultaneous selection for the next cycles. Crop Science, 63(5), 2865–2876. https://doi.org/10.1002/csc2.21081

Gholizadeh, A., Mehravi, S., Hanifei, M., & Akbarpour, O. (2025). Evaluation of salinity tolerance in wheat: A novel approach using artificial neural networks and rank sum-integrate selection index methods. Acta Physiologiae Plantarum, 47(1), 8. https://doi.org/10.1007/s11738-024-03754-5

Gomes, D. A., Alves, I. M., Maciel, G. M., Siquieroli, A. C. S., Peixoto, J. V. M., Pires, P. D. S., & De Medeiros, I. A. (2021). Genetic dissimilarity, selection index and correlation estimation in a melon germplasm. Horticultura Brasileira, 39(1), 46–51. https://doi.org/10.1590/s0102-0536-20210107

Hai, T. T. H., & Thao, P. T. (2021). Effect of plant density and foliar fertilizer spray on growth and yield of netted melon (Cucumis melo L.) ‘Inthanon RZ.’ Hue University Journal of Science: Natural Science, 130(1B), 27–34. https://doi.org/10.26459/hueunijns.v130i1B.6015

Hickey, L. T., Lawson, W., Arief, V. N., Fox, G., Franckowiak, J., & Dieters, M. J. (2012). Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents. Euphytica, 188(1), 113–122. https://doi.org/10.1007/s10681-011-0577-9

Hickey, L. T., Lawson, W., Platz, G. J., Dieters, M., Arief, V. N., Germán, S., ..., & Franckowiak, J. (2011). Mapping Rph20: A gene conferring adult plant resistance to Puccinia hordei in barley. Theoretical and Applied Genetics, 123(1), 55–68. https://doi.org/10.1007/s00122-011-1566-z

Holme, I. B., Gregersen, P. L., & Brinch-Pedersen, H. (2019). Induced genetic variation in crop plants by random or targeted mutagenesis: Convergence and differences. Frontiers in Plant Science, 10, 1468. https://doi.org/10.3389/fpls.2019.01468

Khairi, A. N., Falah, A. F., & Pamungkas, A. P. (2017). Analisis mutu pascapanen melon (Cucumis melo L.) kultivar glamour sakata selama penyimpanan. Chemica, 4(2), 47–52. Retrieved from https://pdfs.semanticscholar.org/a3fe/9f8aaf5fd12ed673a018b1e4327b5093baf1.pdf

Krarup, C., Jacob, C., & Contreras, S. (2016). Pre- and postharvest attributes of muskmelon cultivars for fresh-cut cubes. Ciencia e Investigacion Agraria, 43(1), 43–51. https://doi.org/10.4067/S0718-16202016000100004

Kumar, R. (2024). Allele mining in melon crop improvement. Allele Mining for Genomic Designing of Fruit Crops (pp. 309–326). Boca Raton, USA: CRC Press. https://doi.org/10.1201/9781003386490-12

Li, J., Cheng, K., Lu, Y., Wen, H., Ma, L., Zhang, C., ..., & Zhu, H. (2025). Regulation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) expression and its functions in plant life. Plant Hormones, 1, e002. https://doi.org/10.48130/ph-0025-0002

Magar, B. T., Acharya, S., Gyawali, B., Timilsena, K., Upadhayaya, J., & Shrestha, J. (2021). Genetic variability and trait association in maize (Zea mays L.) varieties for growth and yield traits. Heliyon, 7(9), e07939. https://doi.org/10.1016/j.heliyon.2021.e07939

Matos, R. de, Resende, J. T. V. de, Zeist, A. R., Corte, L. E.-D., Da-Silva, P. R., & Zeffa, D. M. (2021). Performance of the double-cross tomato hybrids from a partial diallel. Ciência e Agrotecnologia, 45, e027320. https://doi.org/10.1590/1413-7054202145027320

Nguyen, P. D. T., Tran, D. T., Thieu, H. H., Lao, T. D., Le, T. A. H., & Nguyen, N. H. (2024). Hybridization between the canary melon and a Vietnamese non-sweet melon cultivar aiming to improve the growth performance and fruit quality in melon (Cucumis melo L.). Molecular Biotechnology, 66(7), 1673–1683. https://doi.org/10.1007/s12033-023-00806-y

Noguera, F. J., Capel, J., Alvarez, J. I., & Lozano, R. (2005). Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theoretical and Applied Genetics, 110(4), 714–720. https://doi.org/10.1007/s00122-004-1897-0

Ojwang, S. O., Okello, J. J., Otieno, D. J., Mutiso, J. M., Lindqvist-Kreuze, H., Coaldrake, P., ..., & Campos, H. (2023). Targeting market segment needs with public-good crop breeding investments: A case study with potato and sweetpotato focused on poverty alleviation, nutrition and gender. Frontiers in Plant Science, 14, 1105079. https://doi.org/10.3389/fpls.2023.1105079

Pechar, G. S., Sánchez-Pina, M. A., Coronado-Parra, T., Bretó, P., García-Almodóvar, R. C., Liu, L., ..., & Donaire, L. (2024). Developmental stages and episode-specific regulatory genes in andromonoecious melon flower development. Annals of Botany, 133(2), 305–320. https://doi.org/10.1093/aob/mcad186

Pereira, M. A. B., Tavares, A. T., Silva, E. H. C., Alves, A. F., Azevedo, S. M., & Nascimento, I. R. (2015). Postharvest conservation of structural long shelf life tomato fruits and with the mutant rin produced, in edaphoclimatic conditions of the southern state of Tocantins. Ciência e Agrotecnologia, 39(3), 225–231. https://doi.org/10.1590/S1413-70542015000300003

Prakash, R., Ravikesavan, R., Vinodhana, N. K., & Senthil, A. (2019). Genetic variability, character association and path analysis for yield and yield component traits in maize (Zea mays L.). Electronic Journal of Plant Breeding, 10(2), 518–524. https://doi.org/10.5958/0975-928X.2019.00065.6

Rahimi, M., & Debnath, S. (2023). Estimating optimum and base selection indices in plant and animal breeding programs by development new and simple SAS and R codes. Scientific Reports, 13(1), 18977. https://doi.org/10.1038/s41598-023-46368-6

Richard, C., Christopher, J., Chenu, K., Borrell, A., Christopher, M., & Hickey, L. (2018). Selection in early generations to shift allele frequency for seminal root angle in wheat. The Plant Genome, 11(2), 170071. https://doi.org/10.3835/plantgenome2017.08.0071

Robinson, H. F., Comstock, R. E., & Harvey, P. H. (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal, 41(8), 353–359. https://doi.org/10.2134/agronj1949.00021962004100080005x

Rohlf, F. J. (2009). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.2 getting started guide. Applied Biostatistics, Inc., New York. Retrieved from https://scholar.google.co.id/scholar?cites=109838439791367232&as_sdt=2005&sciodt=0,5&hl=id

Sabouri, A., Dadras, A. R., Azari, M., Saberi Kouchesfahani, A., Taslimi, M., & Jalalifar, R. (2022). Screening of rice drought-tolerant lines by introducing a new composite selection index and competitive with multivariate methods. Scientific Reports, 12(1), 2163. https://doi.org/10.1038/s41598-022-06123-9

Sakata, Y., Fukino, N., Ohara, T., Sugiyama, M., & Yoshioka, Y. (2013). Effect of monoecious trait on fruit shape and total soluble solid contents of melon. Horticultural Research, 12(1), 15–22. https://doi.org/10.2503/hrj.12.15

Sarwendah, M., Lubis, I., Junaedi, A., Purwoko, B. S., Sopandie, D., & Dewi, A. K. (2022). Application of selection index for rice mutant screening under a drought stress condition imposed at reproductive growth phase. Biodiversitas, 23(10), 5446–5452. https://doi.org/10.13057/biodiv/d231056

Setiawan, A. B., Teo, C. H., Kikuchi, S., Sassa, H., Kato, K., & Koba, T. (2020). Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PLoS ONE, 15(1), e0227578. https://doi.org/10.1371/journal.pone.0227578

Shipman, E. N., Yu, J., Zhou, J., Albornoz, K., & Beckles, D. M. (2021). Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Horticulture Research, 8(1), 1. https://doi.org/10.1038/s41438-020-00428-4

Sinclair, J. W., Park, S. O., Lester, G. E., Yoo, K. S., & Crosby, K. M. (2006). Identification and confirmation of RAPD markers and andromonoecious associated with quantitative trait loci for sugars in melon. Journal of the American Society for Horticultural Science, 131(3), 360–371. https://doi.org/10.21273/JASHS.131.3.360

Singh, D. P., Singh, A. K., & Singh, A. (2021). Plant breeding and cultivar development. Charlotte Cockle. https://doi.org/10.1016/C2018-0-01730-2

Sintia, M., Suwarno, W. B., & Ardie, S. W. (2023). Genetic variability of F2 foxtail millet population derived from ICERI-5 and Botok-10 cross. Biodiversitas, 24(6), 3559–3567. https://doi.org/10.13057/biodiv/d240655

Sormin, S. Y. M., Purwantoro, A., Setiawan, A. B., & Teo, C. H. (2021). Application of inter-SINE amplified polymorphism (ISAP) markers for genotyping of Cucumis melo accessions and its transferability in Coleus spp. Biodiversitas Journal of Biological Diversity, 22(5), 2918–2929. https://doi.org/10.13057/biodiv/d220557

Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377

Syukur, M., Sujiprihati, S., Yunianti, R., & Nida, K. (2012). Pendugaan komponen ragam, heritabilitas dan korelasi untuk menentukan kriteria seleksi cabai (Capsicum annuum L.) populasi F5. Jurnal Hortikultura Indonesia, 1(2), 74–80. https://doi.org/10.29244/jhi.1.2.74-80

Terfa, G. N., & Gurmu, G. N. (2020). Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L) genotypes for seed yield and other agronomic traits. Oil Crop Science, 5(3), 156–160. https://doi.org/10.1016/j.ocsci.2020.08.002

Tzuri, G., Zhou, X., Chayut, N., Yuan, H., Portnoy, V., Meir, A., ..., & Tadmor, Y. (2015). A “golden” SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant Journal, 82(2), 267–279. https://doi.org/10.1111/tpj.12814

Wang, X., Yu, M., Guo, S., Ma, R., & Zhang, B. (2023). The relationship between different fruit load treatments and fruit quality in peaches. Horticulturae, 9(7), 817. https://doi.org/10.3390/horticulturae9070817

Xu, L., He, Y., Tang, L., Xu, Y., & Zhao, G. (2022). Genetics, genomics, and breeding in melon. Agronomy, 12(11), 2891. https://doi.org/10.3390/agronomy12112891

Yunandra, Syukur, M., & Maharijaya, D. A. (2017). Seleksi dan kemajuan seleksi karakter komponen hasil pada persilangan cabai keriting dan cabai besar. Jurnal Agronomi Indonesia, 45(2), 169–174. https://doi.org/10.24831/jai.v45i2.12312

Zaki, H. E. M., & Radwan, K. S. A. (2022). Estimates of genotypic and phenotypic variance, heritability, and genetic advance of horticultural traits in developed crosses of cowpea (Vigna unguiculata [L.] Walp). Frontiers in Plant Science, 13, 987985. https://doi.org/10.3389/fpls.2022.987985

Zali, H., Barati, A., Pour-Aboughadareh, A., Gholipour, A., Koohkan, S., Marzoghiyan, A., ..., & Nowosad, K. (2023). Identification of superior barley genotypes using selection index of ideal genotype (SIIG). Plants, 12(9), 1843. https://doi.org/10.3390/plants12091843

Refbacks

  • There are currently no refbacks.