Typology of Cocoa Seedlings Derived from Orthotropic and Plagiotropic Cuttings Compared with Grafting and Hybrid Seeds
Abstract
Cocoa derived from cuttings is expected to overcome the limitations of grafting and hybrid seed propagation. This study aimed to determine the typology of cocoa seedlings derived from cutting, grafting, and hybrid seeds and the similarity among propagations, and assess the biochemical content of budwood cuttings and its relationship with the success rate. This research was conducted at the greenhouse of the Indonesian Coffee and Cocoa Research Institute, East Java, from April to December 2022 by adopting a completely randomized design. A single-factor experiment was performed on propagation methods, namely hybrid seed (HS), orthotropic cutting (OC), plagiotropic cutting (PC), orthotropic grafting (OG), and plagiotropic grafting (PG). The growth characteristics, anatomical characteristics, and biochemical contents of cuttings were observed. Results showed that compared with PC, OC generated a larger root pith diameter that played a role in the improved growth performance. The leaf area, net assimilation rate, and relative growth rate in OC were similar to those in HS. The time to produce OC was similar to PG to meet the minimum standard requirements of ready-to-plant seedlings. However, the root volume, area, and length in OC were below those in HS and still needed to be improved. The cuttings derived from the budwood garden had higher sucrose contents than those from the production garden. Therefore, obtaining OC and PC samples from a budwood garden is recommended to achieve a high success rate.
Keywords
Full Text:
PDFReferences
Adhikari, P. B., Xu, Q., & Notaguchi, M. (2022). Compatible graft establishment in fruit trees and its potential markers. Agronomy, 12(8), 1981. https://doi.org/10.3390/agronomy12081981
Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096
Asman, A., Iwanami, T., & Rosmana, A. (2024). Effect of drought stress on dieback disease development under Lasiodiplodia theobromae infection in cocoa clone MCC 02. Beverage Plant Research, 4, e034. https://doi.org/10.48130/bpr-0024-0023
Babenko, L. M., Smirnov, O. E., Romanenko, K. O., Trunova, O. K., & Kosakivska, I. V. (2019). Phenolic compounds in plants: Biogenesis and functions. Ukrainian Biochemical Journal, 91(3), 5–18. https://doi.org/10.15407/ubj91.03.005
Cao, Y., Zhong, Z., Wang, H., & Shen, R. (2022). Leaf angle: A target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnology Journal, 20(3), 426–436. https://doi.org/10.1111/pbi.13780
Chun, H. C., Lee, S., Choi, Y. D., Gong, D. H., & Jung, K. Y. (2021). Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Journal of Integrative Agriculture, 20(10), 2639–2651. https://doi.org/10.1016/S2095-3119(20)63560-2
Daymond, A. J., Prawoto, A., Abdoellah, S., Susilo, A. W., Cryer, N. C., Lahive, F., & Hadley, P. (2020). Variation in Indonesian cocoa farm productivity in relation to management, environmental and edaphic factors. Experimental Agriculture, 56(5), 738–751. https://doi.org/10.1017/S0014479720000289
De Vries, J., Evers, J. B., Kuyper, T. W., van Ruijven, J., & Mommer, L. (2021). Mycorrhizal associations change root functionality: A 3D modelling study on competitive interactions between plants for light and nutrients. New Phytologist, 231(3), 1171–1182. https://doi.org/10.1111/nph.17435
Dobrev, P. I., Hoyerová, K., & Petrášek, J. (2017). Analytical determination of auxins and cytokinins. Methods in Molecular Biology, 1569, 31–39. https://doi.org/10.1007/978-1-4939-6831-2_2
Ghimire, B. K., Kim, S. H., Yu, C. Y., & Chung, I. M. (2022). Biochemical and physiological changes during early adventitious root formation in Chrysanthemum indicum cuttings. Plants, 11(11), 1440. https://doi.org/10.3390/plants11111440
Gomes, A. R. S., Sodré, G. A., Guiltinan, M., Lockwood, R., & Maximova, S. (2015). Supplying new cocoa planting material to farmers: A review of propagation methodologies. Retrieved from https://hdl.handle.net/10568/68672
Kawaguchi, K., Notaguchi, M., Okayasu, K., Sawai, Y., Kojima, M., Takebayashi, Y., …, & Shiratake, K. (2024). Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana. Plant Signaling and Behavior, 19(1), 2331358. https://doi.org/10.1080/15592324.2024.2331358
Lubis, N., Sofiyani, S., & Junaedi, E. C. (2022). Penentuan kualitas madu ditinjau dari kadar sukrosa dengan metode Luff Schoorl. Jurnal Sains dan Kesehatan, 4(3), 290–297. https://doi.org/10.25026/jsk.v4i3.1050
Maghfiroh, C. N., & Putra, E. T. S. (2020). Morphological characters of root and yield of three cocoa (Theobroma cacao) clones in the field with dead-end trench. Agricultural Science, 5(2), 58–65. https://doi.org/10.22146/ipas.51284
Maghfiroh, C. N., Putra, E. T. S., & Dewi, H. S. E. S. (2020). Root detection by resistivity imaging and physiological activity with the dead-end trench on three clones of cocoa (Theobroma cacao). Biodiversitas, 21(6), 2794–2803. https://doi.org/10.13057/biodiv/d210656
Mendieta, K. A., Burleigh, J. G., & Putz, F. E. (2021). Pith width, leaf size, and twig thickness. American Journal of Botany, 108(11), 2143–2149. https://doi.org/10.1002/ajb2.1800
Ministry of Agriculture. (2017). Keputusan Menteri Pertanian RI nomor 25/Kpts/KB/020/5/2017 tentang pedoman produksi, serifikasi, peredaram dan pengawan benih tanaman kakao (Theobroma cacao). Ministry of Agriculture of Republic of Indonesia. Retrieved from https://drive.google.com/file/d/1ItRRrizGxy79FzSbQD7SjzQLCkAOSvg4/view
Mithöfer, D., Roshetko, J. M., Donovan, J. A., Nathalie, E., Robiglio, V., Wau, D., ..., & Blare, T. (2017). Unpacking sustainable cocoa: Do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru. International Journal of Biodiversity Science, Ecosystem Services and Management, 13(1), 444–469. https://doi.org/10.1080/21513732.2018.1432691
Niemenak, N., Cilas, C., Rohsius, C., Bleiholder, H., Meier, U., & Lieberei, R. (2010). Phenological growth stages of cacao plants (Theobroma sp.): Codification and description according to the BBCH scale. Annals of Applied Biology, 156(1), 13–24. https://doi.org/10.1111/j.1744-7348.2009.00356.x
Noah, A. M., Casanova-Sáez, R., Ango, R. E. M., Antoniadi, I., Karady, M., Novák, O., ..., & Ljung, K. (2021). Dynamics of auxin and cytokinin metabolism during early root and hypocotyl growth in Theobroma cacao. Plants, 10(5), 967. https://doi.org/10.3390/plants10050967
N’zi, J. C., Koné, I., M’bo, K. A. A., Koné, S., & Kouamé, C. (2023). Successful grafting elite cocoa clones (Theobroma cacao) as a function of the age of rootstock. Heliyon, 9(8), e18732. https://doi.org/10.1016/j.heliyon.2023.e18732
Ocampo-Ariza, C., Müller, S., Yovera, F., Thomas, E., Vansynghel, J., Maas, B., ..., & Tscharntke, T. (2025). Cacao grafting increases crop yield without compromising biodiversity. Journal of Applied Ecology, 62(3), 579–592. https://doi.org/10.1111/1365-2664.14851
Olutegbe, N. S., & Sanni, A. O. (2021). Determinants of compliance to good agricultural practices among cocoa farmers in Ondo State, Nigeria. Caraka Tani: Journal of Sustainable Agriculture, 36(1), 123–134. https://doi.org/10.20961/carakatani.v36i1.44894
Qaderi, M. M., Martel, A. B., & Dixon, S. L. (2019). Environmental factors influence plant vascular system and water regulation. Plants, 8(3), 65. https://doi.org/10.3390/plants8030065
Santos, E. A. D., Almeida, A. A. F. D., Branco, M. C., Santos, I. C. D., Ahnert, D., Baligar, V. C., & Valle, R. R. (2018). Path analysis of phenotypic traits in young cacao plants under drought conditions. PLoS ONE, 13(2), e0191847. https://doi.org/10.1371/journal.pone.0191847
Santoso, T. I., & Zakariyya, F. (2022). Field performance of plagiotropic cocoa in two clonally propagation methods: Vegetative and early production phase. AIP Conference Proceedings, 2563, 020002. https://doi.org/10.1063/5.0104501
Schmidt, J. E., DuVal, A., Puig, A., Tempeleu, A., & Crow, T. (2021). Interactive and dynamic effects of rootstock and rhizobiome on scion nutrition in cacao seedlings. Frontiers in Agronomy, 3, 754646. https://doi.org/10.3389/fagro.2021.754646
Sodré, G. A., & Gomes, A. R. S. (2019). Cocoa propagation, technologies for productions of seedlings. Revista Brasileira de Fruticultura, 41(2), 1–22. https://doi.org/10.1590/0100-29452019782
Somarriba, E., Peguero, F., Cerda, R., Orozco-Aguilar, L., López-Sampson, A., Leandro-Muñoz, M. E., ..., & Sinclair, F. L. (2021). Rehabilitation and renovation of cocoa (Theobroma cacao) agroforestry systems: A review. Agronomy for Sustainable Development, 41(5), 64. https://doi.org/10.1007/s13593-021-00717-9
Statistics Indonesia. (2023). Indonesian cocoa statistics 2022. Retrieved from https://www.bps.go.id/en/publication/2023/11/30/ef4419ba62e6ec7d4490218e/indonesian-cocoa-statistics-2022.html
Steffens, B., & Rasmussen, A. (2016). The physiology of adventitious roots. Plant Physiology, 170(2), 603–617. https://doi.org/10.1104/pp.15.01360
Susilo, A. W., Anita-Sari, I., & Setyawan, B. (2020). Yield performance of promising cocoa clones (Theobroma cacao) in dry climatic conditions. Pelita Perkebunan, 36(1), 24–31. Retrieved from https://scholar.google.co.id/scholar?cites=11510613434984316174&as_sdt=2005&sciodt=0,5&hl=id
Syamsiyah, J., Minardi, S., Herdiansyah, G., Cahyono, O., & Mentari, F. C. (2023). Physical properties of Alfisols, growth and products of hybrid corn affected by organic and inorganic fertilizer. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 99–112. https://doi.org/10.20961/carakatani.v38i1.65014
Tomescu, A. M. F. (2021). The stele a developmental perspective on the diversity and evolution of primary vascular architecture. Biological Reviews, 96(4), 1263–1283. https://doi.org/10.1111/brv.12699
Xue, Z., Liu, L., & Zhang, C. (2020). Regulation of shoot apical meristem and axillary meristem development in plants. International Journal of Molecular Sciences, 21(8), 2917. https://doi.org/10.3390/ijms21082917
Yang, Q., Cheng, W., Hao, Z., Zhang, Q., Yang, D., Teng, D., ..., & Lei, S. (2022). Study on the fractal characteristics of the plant root system and its relationship with soil strength in tailing ponds. Wireless Communications and Mobile Computing, 1, 9499465. https://doi.org/10.1155/2022/9499465
Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., ..., & Lerdau, M. (2023). Leaf angle as a leaf and canopy trait: Rejuvenating its role in ecology with new technology. Ecology Letters, 26(6), 1005–1020. https://doi.org/10.1111/ele.14215
Zhang, S., Peng, F., Xiao, Y., Wang, W., & Wu, X. (2020). Peach PpSnRK1 participates in sucrose-mediated root growth through auxin signaling. Frontiers in Plant Science, 11, 506553. https://doi.org/10.3389/fpls.2020.00409
Refbacks
- There are currently no refbacks.