Assessing Land Use Intensity and Ecosystem Service Dynamics in Citarum Watershed, Indonesia

Irmadi Nahib, Widiatmaka Widiatmaka, Suria Darma Tarigan, Wiwin Ambarwulam, Fadhlullah Ramadhani

Abstract

Changes in land use and land cover (LULC) significantly impact ecosystem services (ES), often leading to land degradation and disrupting natural balance. This study examines how LULC changes have influenced total ecosystem services (TES) in Citarum Watershed over the past decade. Specifically, researchers analyze (1) the shifts in LULC and key ES components—water yield (WY), soil conservation (SC), and carbon storage (CS)—from 2010 to 2020, (2) the spatial relationship between land use intensity (LUI) and ES, and (3) the synchronization and distribution patterns of LUI and TES using a coupling coordination degree (CCD) model. The findings reveal significant LULC changes between 2010 and 2020, with bare/shrubland and agricultural areas expanding by 88.37% and 2.25%, while forest land and lakes declined by 0.78% and 0.09%. These transformations affected ES values, as WY and CS decreased by 15.01% and 4.98%, whereas SC increased by 12.03%. Overall, TES declined by 7.54%, with the steepest reduction (17.70%) observed in the downstream region. The coupling coordination analysis highlights an imbalance between LUI and TES, with 65 to 68% of sub-districts classified as imbalanced. These results underscore the urgent need for integrated land-use planning strategies to restore ecosystem balance and promote sustainability in Citarum Watershed.

Keywords

conservation; ecology; environmental protection; natural resources; sustainability

Full Text:

PDF

References

Agaton, M., Setiawan, Y., & Effendi, H. (2016). Land use/land cover change detection in an urban watershed: A case study of upper Citarum Watershed, West Java Province, Indonesia. Procedia Environmental Sciences, 33, 654–660. https://doi.org/10.1016/j.proenv.2016.03.120

Anselin, L. (1988). A test for spatial autocorrelation in seemingly unrelated regressions. Economics Letters, 28(4), 335–341. https://doi.org/10.1016/0165-1765(88)90009-2

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Bryan, B. A., Gao, L., Ye, Y., Sun, X., Connor, J. D., Crossman, N. D., ... & Hou, X. (2018). China’s response to a national land-system sustainability emergency. Nature, 559(7713), 193–204. https://doi.org/10.1038/s41586-018-0280-2

Byers, A. K., Condron, L., Wakelin, S. A., & Black, A. (2024). Land use intensity is a major driver of soil microbial and carbon cycling across an agricultural landscape. Soil Biology and Biochemistry, 196, 109508. https://doi.org/10.1016/j.soilbio.2024.109508

Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Van Den Belt, M. (1998). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0

De Groot, R., Brander, L., Van Der Ploeg, S., Costanza, R., Bernard, F., Braat, L., ... & Van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1(1), 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

Deng, H., Yang, J., & Wang, P. (2023). Study on coupling coordination relationship between urban development intensity and water environment carrying capacity of Chengdu–Chongqing economic circle. Sustainability, 15(9), 7111. https://doi.org/10.3390/su15097111

Derdouri, A., Wang, R., Murayama, Y., & Osaragi, T. (2021). Understanding the links between LULC changes and SUHI in cities: Insights from two-decadal studies (2001–2020). Remote Sensing, 13(18), 3654. https://doi.org/10.3390/rs13183654

Development Planning Agency at Sub-National Level of West Java Province. (2008). Peraturan Daerah Provinsi Jawa Barat Nomor 9 Tahun 2008 Tentang Rencana Pembangunan Jangka Panjang Daerah Provinsi Jawa Barat Tahun 2005-2025. Retrieved from https://jdih.jabarprov.go.id/page/info/produk/6941

Dong, F., & Li, W. (2021). Research on the coupling coordination degree of “upstream-midstream-downstream” of China’s wind power industry chain. Journal of Cleaner Production, 283, 124633. https://doi.org/10.1016/j.jclepro.2020.124633

Duraiappah, A. K. (2011). Ecosystem services and human well-being: Do global findings make any sense? BioScience, 61(1), 7–8. https://doi.org/10.1525/bio.2011.61.1.2

Fan, Z., Luo, Q., Yu, H., Liu, J., & Xia, W. (2023). Spatial–temporal evolution of the coupling coordination degree between water and land resources matching and cultivated land use eco-efficiency: A case study of the major grain-producing areas in the middle and lower reaches of the Yangtze River. Land, 12(5), 982. https://doi.org/10.3390/land12050982

Felipe-Lucia, M. R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., ... & Allan, E. (2020). Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences, 117(45), 28140–28149. https://doi.org/10.1073/pnas.2016210117

Fu, B., Zhang, L., Xu, Z., Zhao, Y., Wei, Y., & Skinner, D. (2015). Ecosystem services in changing land use. Journal of Soils and Sediments, 15(4), 833–843. https://doi.org/10.1007/s11368-015-1082-x

Ge, K., Wang, Y., Ke, S., & Lu, X. (2023). Research on the spatiotemporal evolution and driving mechanism of coupling coordinating between green transition of urban land use and urban land use efficiency: A case study of the Yangtze River Delta Region in China. Environmental Science and Pollution Research, 31(46), 57002–57024. https://doi.org/10.1007/s11356-023-31072-9

Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D., & Pereira, P. (2021a). Future land-use changes and its impacts on terrestrial ecosystem services: A review. Science of The Total Environment, 781, 146716. https://doi.org/10.1016/j.scitotenv.2021.146716

Gomes, E., Inácio, M., Bogdzevič, K., Kalinauskas, M., Karnauskaitė, D., & Pereira, P. (2021b). Future scenarios impact on land use change and habitat quality in Lithuania. Environmental Research, 197, 111101. https://doi.org/10.1016/j.envres.2021.111101

He, N., Zhou, Y., Wang, L., Li, Q., Zuo, Q., & Liu, J. (2022). Spatiotemporal differentiation and the coupling analysis of ecosystem service value with land use change in Hubei Province, China. Ecological Indicators, 145, 109693. https://doi.org/10.1016/j.ecolind.2022.109693

Husodo, T., Ali, Y., Mardiyah, S. R., Shanida, S. S., Abdoellah, O. S., & Wulandari, I. (2021). Perubahan lahan vegetasi berbasis citra satelit di DAS Citarum, Bandung, Jawa Barat. Majalah Geografi Indonesia, 35(1), 54–63. https://doi.org/10.22146/mgi.61217

Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conference Series: Earth and Environmental Science, 950(1), 012091. https://doi.org/10.1088/1755-1315/950/1/012091

Jew, E. K. K., Burdekin, O. J., Dougill, A. J., & Sallu, S. M. (2019). Rapid land use change threatens provisioning ecosystem services in Miombo Woodlands. Natural Resources Forum, 43(1), 56–70. https://doi.org/10.1111/1477-8947.12167

Khairunnisa, F., Tambunan, M. P., & Marko, K. (2020). Estimation of soil erosion by USLE model using GIS technique (A case study of upper Citarum Watershed). IOP Conference Series: Earth and Environmental Science, 561(1), 012038. https://doi.org/10.1088/1755-1315/561/1/012038

Kurniawan, F., Adrianto, L., Bengen, D. G., & Prasetyo, L. B. (2019). The social-ecological status of small islands: An evaluation of island tourism destination management in Indonesia. Tourism Management Perspectives, 31, 136–144. https://doi.org/10.1016/j.tmp.2019.04.004

Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472. https://doi.org/10.1073/pnas.1100480108

Li, S.-J., Sheng, M.-J., Li, G., Wang, R., Li, J., Zhang, G.-L., & Xiu, W.-M. (2023). Impacts of land use intensification level on fluvo-aquic cropland soil microbial community abundance and necromass accumulation in North China. Huan Jing Ke Xue= Huanjing Kexue, 44(8), 4611–4622. https://doi.org/10.13227/j.hjkx.202209304

Liu, N., Liu, C., Xia, Y., & Da, B. (2018). Examining the coordination between urbanization and eco-environment using coupling and spatial analyses: A case study in China. Ecological Indicators, 93, 1163–1175. https://doi.org/10.1016/j.ecolind.2018.06.013

Liu, Y., Song, W., & Deng, X. (2019). Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecological Indicators, 96, 23–37. https://doi.org/10.1016/j.ecolind.2018.01.029

Liu, Y., Sun, H., Shi, L., Wang, H., Xiu, Z., Qiu, X., …, & Wang, C. (2021). Spatial-temporal changes and driving factors of land-use eco-efficiency incorporating ecosystem services in China. Sustainability, 13(2), 728. https://doi.org/10.3390/su13020728

Lyu, R., Clarke, K. C., Tian, X., Zhao, W., Pang, J., & Zhang, J. (2022). Land use zoning management to coordinate the supply–demand imbalance of ecosystem services: A case study in the city belt along the Yellow River in Ningxia, China. Frontiers in Environmental Science, 10, 911190. https://doi.org/10.3389/fenvs.2022.911190

Maimaiti, B., Chen, S., Kasimu, A., Mamat, A., Aierken, N., & Chen, Q. (2022). Coupling and coordination relationships between urban expansion and ecosystem service value in Kashgar City. Remote Sensing, 14(11), 2557. https://doi.org/10.3390/rs14112557

Malik, A. D., Arief, M. C. W., Withaningsih, S., & Parikesit, P. (2023). Modeling regional aboveground carbon stock dynamics affected by land use and land cover changes. Global Journal of Environmental Science and Management, 10(1), 245–266 https://doi.org/10.22034/gjesm.2024.01.16

Malinga, R., Gordon, L. J., Jewitt, G., & Lindborg, R. (2015). Mapping ecosystem services across scales and continents–A review. Ecosystem Services, 13, 57–63. https://doi.org/10.1016/j.ecoser.2015.01.006

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Wetlands and water synthesis. Washington, D.C.: World Resources Institute. Retrieved from http://hdl.handle.net/10919/65899

Minister of Public Works and Housing Regulation. (2016). Citarum river basin water resources management plan 2016. Retrieved from https://sda.pu.go.id/balai/bbwscitarum/publikasi-perencanaan/rencana-rpsda

Nahib, I., Ambarwulan, W., Sutrisno, D., Darmawan, M., Suwarno, Y., Rahadiati, A., …, & Gaol, Y. L. (2023). Spatial-temporal heterogeneity and driving factors of water yield services in Citarum river basin unit, West Java, Indonesia. Archives of Environmental Protection, 49(1), 3–24. https://doi.org/10.24425/aep.2023.144733

Nahib, I., Amhar, F., Wahyudin, Y., Ambarwulan, W., Suwarno, Y., Suwedi, N., ..., & Ramadhani, F. (2022). Spatial-temporal changes in water supply and demand in the Citarum Watershed, West Java, Indonesia using a geospatial approach. Sustainability, 15(1), 562. https://doi.org/10.3390/su15010562

Nahib, I., Wahyudin, Y., Amhar, F., Ambarwulan, W., Nugroho, N. P., Pranoto, B., …, & Karolinoerita, V. (2024a). Analysis of factors influencing spatial distribution of soil erosion under diverse subwatershed based on geospatial perspective: A case study at Citarum Watershed, West Java, Indonesia. Scientifica, 2024(1), 7251691. https://doi.org/10.1155/2024/7251691

Nahib, I., Widiatmaka, W., Tarigan, S. D., Ambarwulan, W., & Ramadhani, F. (2024b). Exploring ecosystem service trade-offs and synergies for sustainable urban watershed management in Indonesia–A case study of the Citarum River basin, West Java, Indonesia. Ecological Engineering & Environmental Technology, 25(12), 315–332. https://doi.org/10.12912/27197050/195008

Peng, J., Tian, L., Liu, Y., Zhao, M., Hu, Y., & Wu, J. (2017). Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Science of the Total Environment, 607–608, 706–714. https://doi.org/10.1016/j.scitotenv.2017.06.218

Pereira, P., Bogunovic, I., Inacio, M., Zhao, W., & Barcelo, D. (2023). Agriculture intensification impacts on soil and water ecosystem services. EGU General Assembly Conference Abstracts (pp. EGU–1423). https://doi.org/10.5194/egusphere-egu23-1423

Pitaloka, E. F., Karuniasa, M., & Moersidik, S. S. (2020). Time series of forest land cover change in the Upper Citarum Watershed, West Java Province, Indonesia. E3S Web of Conferences, 211, 04001. https://doi.org/10.1051/e3sconf/202021104001

Pranoto, B., Hartulistiyoso, E., Aidi, M. N., Sutrisno, D., Nahib, I., Purwono, N., …, & Rahmila, Y. I. (2024). Assessing the sustainability of small hydropower sites in the Citarum Watershed, Indonesia employing CA-Markov and SWAT models. Water Supply, 24(9), 3253–3268. https://doi.org/10.2166/ws.2024.209

Priyadarshini, R., Hamzah, A., & Widjajani, B. W. (2019). Carbon stock estimates due to land cover changes at Sumber Brantas Sub-Watershed, East Java. Caraka Tani: Journal of Sustainable Agriculture, 34(1), 1–12. https://doi.org/10.20961/carakatani.v34i1.27124

Shao, G., Tang, L., & Liao, J. (2019). Overselling overall map accuracy misinforms about research reliability. Landscape Ecology, 34(11), 2487–2492. https://doi.org/10.1007/s10980-019-00916-6

Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., ... & Wyatt, K. (2020). InVEST 3.8. 7. User’s Guide. The Natural Capital Project, Standford University, University of Minnesota, The Natural Capital Project. Retrieved from https://naturalcapitalproject.stanford.edu/software/invest

Sholeh, M., Pranoto, P., Budiastuti, S., & Sutarno, S. (2018). Analysis of Citarum River pollution indicator using chemical, physical, and bacteriological methods. AIP Conference Proceedings, 2049(1), 020068. https://doi.org/10.1063/1.5082473

Siswanto, S. Y., & Francés, F. (2019). How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: A case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences, 78(17), 550. https://doi.org/10.1007/s12665-019-8561-0

Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., …, & Visconti, P. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724–729. https://doi.org/10.1038/s41586-020-2784-9

Sun, X., Lu, Z., Li, F., & Crittenden, J. C. (2018). Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecological Indicators, 94, 117–129. https://doi.org/10.1016/j.ecolind.2018.06.049

Sun, X., Ye, D., Shan, R., Peng, Q., Zhao, Z., & Sun, J. (2022). Effect of physical geographic and socio-economic processes on interactions among ecosystem services based on machine learning. Journal of Cleaner Production, 359, 131976. https://doi.org/10.1016/j.jclepro.2022.131976

Suwardi, S., Darmawan, D., Djajakirana, G., Sumawinata, B., & Al Viandari, N. (2023). Assessing N2O emissions from tropical crop cultivation in mineral and peatland soils: A review. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 308–326. https://doi.org/10.20961/carakatani.v38i2.75235

Syaban, A. S. N., & Appiah-Opoku, S. (2024). Unveiling the complexities of land use transition in Indonesia’s new capital city IKN Nusantara: A multidimensional conflict analysis. Land, 13(5), 606. https://doi.org/10.3390/land13050606

Turmudi, T., Nahib, I., Ambarwulan, W., Suryanta, J., Suwedi, N., Suwarno, Y., …, & Yulianingsani, Y. (2024). Assessment of dynamic water yield using multi scenario of LULC in Cisadane Watershed West Java, Indonesia. Journal of Infrastructure, Policy and Development, 8(15), 9375. https://doi.org/10.24294/jipd9375

Wang, W., Wu, T., Li, Y., Xie, S., Han, B., Zheng, H., & Ouyang, Z. (2020). Urbanization impacts on natural habitat and ecosystem services in the Guangdong-Hong Kong-Macao “Megacity.” Sustainability, 12(16), 6675. https://doi.org/10.3390/su12166675

Wang, X., Wang, D., Gao, W., Lu, J., & Jin, X. (2022). Investigation of spatial coupling coordination development: Identifying land system states from the adaptation–conflict perspective. International Journal of Environmental Research and Public Health, 20(1), 373. https://doi.org/10.3390/ijerph20010373

Wang, W., & Zhang, J. (2023). Measuring the coupling coordination of land use functions and influencing factors: A case study in Beijing. Frontiers in Ecology and Evolution, 11, 1159152. https://doi.org/10.3389/fevo.2023.1159152

Wang, Y., Li, X., Zhang, Q., Li, J., & Zhou, X. (2018). Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecological Indicators, 94, 430–445. https://doi.org/10.1016/j.ecolind.2018.06.047

Wen, Z., Zheng, H., Smith, J. R., Zhao, H., Liu, L., & Ouyang, Z. (2019). Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of the Total Environment, 682, 583–590. https://doi.org/10.1016/j.scitotenv.2019.05.160

Xiao, R., Lin, M., Fei, X., Li, Y., Zhang, Z., & Meng, Q. (2020). Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. Journal of Cleaner Production, 253, 119803. https://doi.org/10.1016/j.jclepro.2019.119803

Xie, Y., Zhu, Q., Bai, H., Luo, P., & Liu, J. (2023). Spatio-temporal evolution and coupled coordination of LUCC and ESV in cities of the Transition Zone, Shenmu City, China. Remote Sensing, 15(12), 3136. https://doi.org/10.3390/rs15123136

Xu, Y., Tang, H., Wang, B., & Chen, J. (2016). Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environmental Earth Sciences, 75(5), 416. https://doi.org/10.1007/s12665-015-5103-2

Yang, H., Zheng, L., Wang, Y., Li, J., Zhang, B., & Bi, Y. (2022). Quantifying the relationship between land use intensity and ecosystem services’ value in the Hanjiang River Basin: A case study of the Hubei Section. International Journal of Environmental Research and Public Health, 19(17), 10950. https://doi.org/10.3390/ijerph191710950

Yulianto, F., Nugroho, G., Aruba Chulafak, G., & Suwarsono, S. (2021). Improvement in the accuracy of the postclassification of land use and land cover using landsat 8 data based on the majority of segment-based filtering approach. The Scientific World Journal, 2021(1), 6658818. https://doi.org/10.1155/2021/6658818

Yusuf, S. M., Murtilaksono, K., Hidayat, Y., & Suharnoto, Y. (2018). Analysis and prediction of land cover change in upstream Citarum Watershed. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 8(3), 365–375. https://doi.org/10.29244/jpsl.8.3.365-375

Zhang, H., Wang, Y., Wang, C., Yang, J., & Yang, S. (2022). Coupling analysis of environment and economy based on the changes of ecosystem service value. Ecological Indicators, 144, 109524. https://doi.org/10.1016/j.ecolind.2022.109524

Zhang, J., Lu, X., Qin, Y., Zhang, Y., & Yang, D. (2024). Can urbanization-driven land-use and land-cover change reduce ecosystem services? A case of coupling coordination relationship for contiguous poverty areas in China. Land, 13(1), 82. https://doi.org/10.3390/land13010082

Zhang, Z., & Li, Y. (2020). Coupling coordination and spatiotemporal dynamic evolution between urbanization and geological hazards–A case study from China. Science of the Total Environment, 728, 138825. https://doi.org/10.1016/j.scitotenv.2020.138825

Zheng, H., Peng, J., Qiu, S., Xu, Z., Zhou, F., Xia, P., & Adalibieke, W. (2022). Distinguishing the impacts of land use change in intensity and type on ecosystem services trade-offs. Journal of Environmental Management, 316, 115206. https://doi.org/10.1016/j.jenvman.2022.115206

Zhu, S., Huang, J., & Zhao, Y. (2022). Coupling coordination analysis of ecosystem services and urban development of resource-based cities: A case study of Tangshan City. Ecological Indicators, 136, 108706. https://doi.org/10.1016/j.ecolind.2022.108706

Refbacks

  • There are currently no refbacks.