Decolorization and Bioelectricity Generation from Palm Oil Mill Effluent by a Photosynthetic Bacterial Consortium
Abstract
Palm oil mill effluent (POME) is the dark brown agricultural wastewater from palm oil extraction factories. It is difficult to decolorize using conventional methods. Melanoidin is a dark-colored polymer formed through the Maillard reaction which is the primary cause of the dark color in POME. This study investigated the potential of a photosynthetic bacterial consortium consisting of Blastochloris sulfoviridis and Lentimicrobium saccharophilum for POME treatment and bioenergy generation. The consortium effectively removed melanoidin content (68.89±0.84%) and color (60.87±1.22%) from POME without the addition of chemicals or culture medium. Additionally, a microbial fuel cell (MFC) integrated with the consortium generated apower output of up to 5.70±1.06 W m-3. The degraded metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS) after treatment. The results revealed that melanoidin was converted to 1-ethyl-2-methylbenzene, 1,2,4-trimethylbenzene, decamethylcyclopentasiloxane, dodecamethylcyclohexane, butylated hydroxytoluene, and stigmasta-3,5-diene. Following treatment, the cell pellet was recovered and analyzed for valuable by-products. Carotenoid and astaxanthin pigments were extracted with yields of 0.32±0.01 and 0.02±0.00 mg g-1, respectively. These findings demonstrate the versatility of the photosynthetic bacterial consortium, which offers a sustainable solution for POME treatment while simultaneously POME decolorization and producing bioenergy and valuable compounds.
Keywords
Full Text:
PDFReferences
Abdullah, N., & Sulaim, F. (2013). The oil palm wastes in Malaysia. InTech. https://doi.org/10.5772/55302
Abrams, J. F., Hohn, S., Rixen, T., Baum, A., & Merico, A. (2015). The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle. Global Change Biology, 22(1), 325–337. https://doi.org/10.1111/gcb.13108
Agrahari, R., Karmakar, S., & Rani, R. (2024). Bioelectricity generation and anodic decolorization of reactive dyes in H-type microbial fuel cell using Pseudomonas gessardii. Environmental Chemistry and Ecotoxicology, 6, 216–222. https://doi.org/10.1016/j.enceco.2024.06.003
Albarracin-Arias, J. A., Yu, C. P., Maeda, T., Quintero, W. V., & Sanchez-Torres, V. (2021). Microbial community dynamics and electricity generation in MFCs inoculated with POME sludges and pure electrogenic culture. International Journal of Hydrogen Energy, 46(74), 36903–36916. https://doi.org/10.1016/j.ijhydene.2021.08.218
Baranitharan, E., Khan, M. R., Prasad, D. M. R., & Salihon, J. B. (2013). Bioelectricity generation from palm oil mill effluent in microbial fuel cell using polacrylonitrile carbon felt as electrode. Water, Air, & Soil Pollution, 224(1), 1533. https://doi.org/10.1007/s11270-013-1533-1
Cao, K., Zhi, R., & Zhang, G. (2020). Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. Bioresource Technology, 299, 122648. https://doi.org/10.1016/j.biortech.2019.122648
Canneaux, S., Vandeputte, R., Hammaecher, C., Louis, F., & Ribaucour, M. (2012). Thermochemical data and additivity group values for ten species of O-xylene low-temperature oxidation mechanism. The Journal of Physical Chemistry A, 116(1), 592–610. https://doi.org/10.1021/jp208382t
Chaijak, P., Kongthong, A., & Changkit, N. (2024). Utilizing melanoidin consuming microalgae for electricity generation and wastewater treatment via photosynthetic microbial fuel cell. Acta Scientiarum Polonorum: Formatio Circumiectus, 23(1), 75–85. https://doi.org/10.15576/ASP.FC/183478
Chan, Y., Chong, M., & Law, C. (2012). Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB). Bioresource Technology, 125, 145–157. https://doi.org/10.1016/j.biortech.2012.08.118
Choi, H. P., Kang, H. J., Seo, H. C., & Sung, H. C. (2022). Isolation and identification of photosynthetic bacterium useful for wastewater treatment. Journal of Microbiology and Biotechnology, 12(4), 643–648. Retrieved from https://koreascience.kr/article/JAKO200211921170373.page
Darajeh, N., Truong, P., Aziz, A. A., Bakar, R. A., & Man, H. C. (2014). Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 2014(1), 683579. https://doi.org/10.1155/2014/683579
Dashti, A. F., Aziz, H. A., Adlan, M. N., & Ibrahim, A. H. (2021). Performance of horizontal roughing filter for colour removal of palm oil mill effluent using natural adsorbent. Environmental Processes, 8(1), 1267–1287. https://doi.org/10.1007/s40710-021-00520-4
Heras, I. D. L., Molina, R., Segura, Y., Hilsen, T., Gonzalez-Benitez, N., Melero, J. A., Mohedano, A. F. Martinez, F., & Puyol, D. (2020). Contamination of N-poor wastewater with emerging pollutants does not affect the performance of purple phototrophic bacteria and the subsequent resource recovery potential. Journal of Hazardous Materials, 385, 121617. https://doi.org/10.1016/j.jhazmat.2019.121617
Jagaba, A. H., Kutty, S. R. M., Hayder, G., Baloo, L., Noor, A., Yaro, N. S. A., … & Usman, A. K. (2021). A systematic literature review on waste-to-resource potential of palm oil clinker for sustainable engineering and environmental applications. Materials, 14(16), 4456. https://doi.org/10.3390/ma14164456
James, K. J., & Stack, M. A. (1997). Rapid determination of volatile organic compounds in environmentally hazardous wastewater using solid phase microextraction. Fresenius Journal of Analytical Chemistry, 358, 833–837. https://doi.org/10.1007/s002160050518
Khoo, F. S., Chew, K. W., Ooi, C. W., Ong, H. C., Ling, T. C., & Show, P. L. (2019). Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. Bioresource Technology, 290, 121794. https://doi.org/10.1016/j.biortech.2019.121794
Lee, J., Kim, K., Park, S. M., Kwon, J. S., & Jeung, E. B. (2023). Effects of decamethylcyclopentasiloxane on reproductive systems in female rats. Toxics, 11(4), 302. https://doi.org/10.3390/toxics11040302
Li, J., Liang, Y., Miao, Y., Wang, D., Jia, S., & Liu, C. H. (2020). Metagenomic insight into aniline effects on microbial community and biological sulfate reduction pathways during anaerobic treatment of high-sulfate wastewater. Science of The Total Environment, 742, 140537. https://doi.org/10.1016/j.scitotenv.2020.140537
Liakos, T. I., & Lazaridis N. K. (2016). Melanoidin removal from molasses effluent by adsorption. Journal of Water Process Engineering, 10, 156–164. https://doi.org/10.1016/j.jwpe.2016.02.006
Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry-A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
Mutsaers, H. J. W. (2019). The challenge of the oil palm: Using degraded land for its cultivation. Outlook on Agriculture, 48(3), 190–197. https://doi.org/10.1177/0030727019858720
Ng, C. A., Chew, S. N., Bashir, M. J. K., Abunada, Z., Wong, J. W. C., Habila, M. A., & Khoo, K. S. (2024). Enhancing microbial fuel cell performance for sustainable treatment of palm oil mill wastewater using carbon anode coated with activated carbon. International Journal of Hydrogen Energy, 52(Part D), 1092–1104. https://doi.org/10.1016/j.ijhydene.2023.09.162
Nur, M. M. A., Garcia, G. M., Boelen, P., & Buma, A. G. J. (2021). Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis. Journal of Applied Phycology, 33, 901–915. https://doi.org/10.1007/s10811-020-02341-8
Obileke, K., Onyeaka, H., & Meyer, E. L. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003
Patthawaro, S., Lomthaisong, K., & Saejung, C. (2020). Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste and Biomass Valorization, 11, 2375–2386. https://doi.org/10.1007/s12649-018-00571-z
Priya, A. K., Subha, C., Kumar, S., Suresh, R., Rajendran, S., Vasseghian, Y., & Soto-Moscoso, M. (2022). Advancements on sustainable microbial fuel cells and their future prospects: A review. Environmental Research, 210, 112930. https://doi.org/10.1016/j.envres.2022.112930
Rakhmania, R., Kamyab, H., Yuzir, M. A., Al-Qaim, F. F., Purba, L. D. A., & Riyadi, A. (2023). Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process. Environmental Science and Pollution Research, 30, 71741–71753. https://doi.org/10.1007/s11356-021-16197-z
Ratnasari, A., Zaidi, N. S., Syafiuddin, A., Boopathy, R., Kueh, A. B. H., Amalia, R., & Prasetyo, D. D. (2021). Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresource Technology Reports, 15, 100809. https://doi.org/10.1016/j.biteb.2021.100809
Rizvi, S., Goswami, L., & Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports, 12, 100591. https://doi.org/10.1016/j.biteb.2020.100591
Saejung, C., & Puensunnern, L. (2018). Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste and Biomass Valorization, 11, 143–152. https://doi.org/10.1007/s12649-018-0379-6
Said, M., Sitanggang, A. S., Julianda, R., Estuningsih, S. P., & Fudholi, A. (2021). Production of methane as bio-fuel from palm oil mill effluent using anaerobic consortium bacteria. Journal of Cleaner Production, 282, 124424. https://doi.org/10.1016/j.jclepro.2020.124424
Saputera, W. H., Amri, A. F., Daiyan, R., & Sasongko, D. (2021). Photocatalytic technology for palm oil mill effluent (POME) wastewater treatment: Current progress and future perspective. Materials, 14(11), 2846. https://doi.org/10.3390/ma14112846
Sasikala, C., & Ramana, C. V. (1995). Biotechnological potentials of anoxygenic phototrophic bacteria I. Production of single-cell protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Advances in Applied Microbiology, 41(1), 173–226. https://doi.org/10.1016/s0065-2164(08)70310-1
Silva, J., Bernardo, F., Jesus, M., Faria, T., Alves, A., Ratola, N., & Homem, V. (2021). Levels of volatile methylsiloxanes in urban wastewater sludges at various steps of treatment. Environmental Chemistry Letters, 19, 2723–2732. https://doi.org/10.1007/s10311-021-01191-1
Sulaiman, A. A., Amruddin, A., Bahrun, A. H., Yuna, K., & Keela, M. (2024). New challenges and opportunities of Indonesian crude palm oil in international trade. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 94–106. http://dx.doi.org/10.20961/carakatani.v39i1.81957
Talaiekhozani, A., & Rezania, S. (2017). Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: A review. Journal of Water Process Engineering, 19, 312–321. https://doi.org/10.1016/j.jwpe.2017.09.004
Tamrin, K., & Yaser, A. (2017). Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multi-objective optimization on the basis of ration analysis (MOORA). Environmental Science and Pollution Research, 24, 15863–15869. https://doi.org/10.1007/s11356-016-8235-3
Thipraksa, J., Chaijak, P., Michu, P., & Lertworapreecha, M. (2022). Biodegradation and bioelectricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell. Biocatalysis and Agricultural Biotechnology, 43, 102444. https://doi.org/10.1016/j.bcab.2022.102444
Valizadeh, S., Lam, S. S., Ko, C. H., Lee, S. H., Farooq, A., Yu, Y. J., & Park, Y. K. (2021). Biohydrogen production from catalytic conversion of food waste via stream and air gasification using eggshell-and homo-type Ni/Al2O3 catalysts. Bioresource Technology, 320(Part B), 124313. https://doi.org/10.1016/j.biortech.2020.124313
Wang, L., Hao, J., Yu, X., Zhang, B., Sui, J., & Wang, C. (2023). Method development for the identification, extraction and characterization of melanoidins in thermal hydrolyzed sludge. Science of The Total Environment, 864, 161204. https://doi.org/10.1016/j.scitotenv.2022.161204
Xu, H., Wang, L., Lin, C., Zheng, J., Wen, Q., Chen, Y., Wang, Y., & Qi, L. (2020). Improved simultaneous decolorization and power generation in a microbial fuel cell with the sponge anode modified by polyaniline and chitosan. Applied Biochemistry and Biotechnology, 192, 698–718. https://doi.org/10.1007/s12010-020-03346-2
Xu, X., Zhao, Q., Wu, M., Ding, J., & Zhang, W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresource Technology, 225, 402–408. https://doi.org/10.1016/j.biortech.2016.11.126
Yehye, W. A., Rahman, N. A., Ariffin, A., Hamid, S. B. A., Alhadi, A. A., Kadir, F. A., & Yaeghoobi, M. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 101, 295–312. https://doi.org/10.1016/j.ejmech.2015.06.026
Yu, J., Wang, J., Xia, T., Zhang, X., Geng, B., Wang, Z., Meng, Y., Yu, J., & Huang, S. (2023). Polyphenols and melanoidins characterization in different fractions of Chinese commercial beers. Journal of Food Measurement and Characterization, 17, 6077–6090. https://doi.org/10.1007/s11694-023-02088-z
Refbacks
- There are currently no refbacks.