Decolorization and Bioelectricity Generation from Palm Oil Mill Effluent by a Photosynthetic Bacterial Consortium

Pimprapa Chaijak, Alisa Kongthong

Abstract

Palm oil mill effluent (POME) is the dark brown agricultural wastewater from palm oil extraction factories. It is difficult to decolorize using conventional methods. Melanoidin is a dark-colored polymer formed through the Maillard reaction which is the primary cause of the dark color in POME. This study investigated the potential of a photosynthetic bacterial consortium consisting of Blastochloris sulfoviridis and Lentimicrobium saccharophilum for POME treatment and bioenergy generation. The consortium effectively removed melanoidin content (68.89±0.84%) and color (60.87±1.22%) from POME without the addition of chemicals or culture medium. Additionally, a microbial fuel cell (MFC) integrated with the consortium generated apower output of up to 5.70±1.06 W m-3. The degraded metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS) after treatment. The results revealed that melanoidin was converted to 1-ethyl-2-methylbenzene, 1,2,4-trimethylbenzene, decamethylcyclopentasiloxane, dodecamethylcyclohexane, butylated hydroxytoluene, and stigmasta-3,5-diene. Following treatment, the cell pellet was recovered and analyzed for valuable by-products. Carotenoid and astaxanthin pigments were extracted with yields of 0.32±0.01 and 0.02±0.00 mg g-1, respectively. These findings demonstrate the versatility of the photosynthetic bacterial consortium, which offers a sustainable solution for POME treatment while simultaneously POME decolorization and producing bioenergy and valuable compounds.

Keywords

biodegradation; color removal; melanoidin; palm oil waste; pigment degradation

Full Text:

PDF

References

Abdullah, N., & Sulaim, F. (2013). The oil palm wastes in Malaysia. InTech. https://doi.org/10.5772/55302

Abrams, J. F., Hohn, S., Rixen, T., Baum, A., & Merico, A. (2015). The impact of Indonesian peatland degradation on downstream marine ecosystems and the global carbon cycle. Global Change Biology, 22(1), 325–337. https://doi.org/10.1111/gcb.13108

Agrahari, R., Karmakar, S., & Rani, R. (2024). Bioelectricity generation and anodic decolorization of reactive dyes in H-type microbial fuel cell using Pseudomonas gessardii. Environmental Chemistry and Ecotoxicology, 6, 216–222. https://doi.org/10.1016/j.enceco.2024.06.003

Albarracin-Arias, J. A., Yu, C. P., Maeda, T., Quintero, W. V., & Sanchez-Torres, V. (2021). Microbial community dynamics and electricity generation in MFCs inoculated with POME sludges and pure electrogenic culture. International Journal of Hydrogen Energy, 46(74), 36903–36916. https://doi.org/10.1016/j.ijhydene.2021.08.218

Baranitharan, E., Khan, M. R., Prasad, D. M. R., & Salihon, J. B. (2013). Bioelectricity generation from palm oil mill effluent in microbial fuel cell using polacrylonitrile carbon felt as electrode. Water, Air, & Soil Pollution, 224(1), 1533. https://doi.org/10.1007/s11270-013-1533-1

Cao, K., Zhi, R., & Zhang, G. (2020). Photosynthetic bacteria wastewater treatment with the production of value-added products: A review. Bioresource Technology, 299, 122648. https://doi.org/10.1016/j.biortech.2019.122648

Canneaux, S., Vandeputte, R., Hammaecher, C., Louis, F., & Ribaucour, M. (2012). Thermochemical data and additivity group values for ten species of O-xylene low-temperature oxidation mechanism. The Journal of Physical Chemistry A, 116(1), 592–610. https://doi.org/10.1021/jp208382t

Chaijak, P., Kongthong, A., & Changkit, N. (2024). Utilizing melanoidin consuming microalgae for electricity generation and wastewater treatment via photosynthetic microbial fuel cell. Acta Scientiarum Polonorum: Formatio Circumiectus, 23(1), 75–85. https://doi.org/10.15576/ASP.FC/183478

Chan, Y., Chong, M., & Law, C. (2012). Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic-aerobic bioreactor (IAAB). Bioresource Technology, 125, 145–157. https://doi.org/10.1016/j.biortech.2012.08.118

Choi, H. P., Kang, H. J., Seo, H. C., & Sung, H. C. (2022). Isolation and identification of photosynthetic bacterium useful for wastewater treatment. Journal of Microbiology and Biotechnology, 12(4), 643–648. Retrieved from https://koreascience.kr/article/JAKO200211921170373.page

Darajeh, N., Truong, P., Aziz, A. A., Bakar, R. A., & Man, H. C. (2014). Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 2014(1), 683579. https://doi.org/10.1155/2014/683579

Dashti, A. F., Aziz, H. A., Adlan, M. N., & Ibrahim, A. H. (2021). Performance of horizontal roughing filter for colour removal of palm oil mill effluent using natural adsorbent. Environmental Processes, 8(1), 1267–1287. https://doi.org/10.1007/s40710-021-00520-4

Heras, I. D. L., Molina, R., Segura, Y., Hilsen, T., Gonzalez-Benitez, N., Melero, J. A., Mohedano, A. F. Martinez, F., & Puyol, D. (2020). Contamination of N-poor wastewater with emerging pollutants does not affect the performance of purple phototrophic bacteria and the subsequent resource recovery potential. Journal of Hazardous Materials, 385, 121617. https://doi.org/10.1016/j.jhazmat.2019.121617

Jagaba, A. H., Kutty, S. R. M., Hayder, G., Baloo, L., Noor, A., Yaro, N. S. A., … & Usman, A. K. (2021). A systematic literature review on waste-to-resource potential of palm oil clinker for sustainable engineering and environmental applications. Materials, 14(16), 4456. https://doi.org/10.3390/ma14164456

James, K. J., & Stack, M. A. (1997). Rapid determination of volatile organic compounds in environmentally hazardous wastewater using solid phase microextraction. Fresenius Journal of Analytical Chemistry, 358, 833–837. https://doi.org/10.1007/s002160050518

Khoo, F. S., Chew, K. W., Ooi, C. W., Ong, H. C., Ling, T. C., & Show, P. L. (2019). Extraction of natural astaxanthin from Haematococcus pluvialis using liquid biphasic flotation system. Bioresource Technology, 290, 121794. https://doi.org/10.1016/j.biortech.2019.121794

Lee, J., Kim, K., Park, S. M., Kwon, J. S., & Jeung, E. B. (2023). Effects of decamethylcyclopentasiloxane on reproductive systems in female rats. Toxics, 11(4), 302. https://doi.org/10.3390/toxics11040302

Li, J., Liang, Y., Miao, Y., Wang, D., Jia, S., & Liu, C. H. (2020). Metagenomic insight into aniline effects on microbial community and biological sulfate reduction pathways during anaerobic treatment of high-sulfate wastewater. Science of The Total Environment, 742, 140537. https://doi.org/10.1016/j.scitotenv.2020.140537

Liakos, T. I., & Lazaridis N. K. (2016). Melanoidin removal from molasses effluent by adsorption. Journal of Water Process Engineering, 10, 156–164. https://doi.org/10.1016/j.jwpe.2016.02.006

Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry-A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003

Mutsaers, H. J. W. (2019). The challenge of the oil palm: Using degraded land for its cultivation. Outlook on Agriculture, 48(3), 190–197. https://doi.org/10.1177/0030727019858720

Ng, C. A., Chew, S. N., Bashir, M. J. K., Abunada, Z., Wong, J. W. C., Habila, M. A., & Khoo, K. S. (2024). Enhancing microbial fuel cell performance for sustainable treatment of palm oil mill wastewater using carbon anode coated with activated carbon. International Journal of Hydrogen Energy, 52(Part D), 1092–1104. https://doi.org/10.1016/j.ijhydene.2023.09.162

Nur, M. M. A., Garcia, G. M., Boelen, P., & Buma, A. G. J. (2021). Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis. Journal of Applied Phycology, 33, 901–915. https://doi.org/10.1007/s10811-020-02341-8

Obileke, K., Onyeaka, H., & Meyer, E. L. (2021). Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochemistry Communications, 125, 107003. https://doi.org/10.1016/j.elecom.2021.107003

Patthawaro, S., Lomthaisong, K., & Saejung, C. (2020). Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste and Biomass Valorization, 11, 2375–2386. https://doi.org/10.1007/s12649-018-00571-z

Priya, A. K., Subha, C., Kumar, S., Suresh, R., Rajendran, S., Vasseghian, Y., & Soto-Moscoso, M. (2022). Advancements on sustainable microbial fuel cells and their future prospects: A review. Environmental Research, 210, 112930. https://doi.org/10.1016/j.envres.2022.112930

Rakhmania, R., Kamyab, H., Yuzir, M. A., Al-Qaim, F. F., Purba, L. D. A., & Riyadi, A. (2023). Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process. Environmental Science and Pollution Research, 30, 71741–71753. https://doi.org/10.1007/s11356-021-16197-z

Ratnasari, A., Zaidi, N. S., Syafiuddin, A., Boopathy, R., Kueh, A. B. H., Amalia, R., & Prasetyo, D. D. (2021). Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresource Technology Reports, 15, 100809. https://doi.org/10.1016/j.biteb.2021.100809

Rizvi, S., Goswami, L., & Gupta, S. K. (2020). A holistic approach for melanoidin removal via Fe-impregnated activated carbon prepared from Mangifera indica leaves biomass. Bioresource Technology Reports, 12, 100591. https://doi.org/10.1016/j.biteb.2020.100591

Saejung, C., & Puensunnern, L. (2018). Evaluation of molasses-based medium as a low cost medium for carotenoids and fatty acid production by photosynthetic bacteria. Waste and Biomass Valorization, 11, 143–152. https://doi.org/10.1007/s12649-018-0379-6

Said, M., Sitanggang, A. S., Julianda, R., Estuningsih, S. P., & Fudholi, A. (2021). Production of methane as bio-fuel from palm oil mill effluent using anaerobic consortium bacteria. Journal of Cleaner Production, 282, 124424. https://doi.org/10.1016/j.jclepro.2020.124424

Saputera, W. H., Amri, A. F., Daiyan, R., & Sasongko, D. (2021). Photocatalytic technology for palm oil mill effluent (POME) wastewater treatment: Current progress and future perspective. Materials, 14(11), 2846. https://doi.org/10.3390/ma14112846

Sasikala, C., & Ramana, C. V. (1995). Biotechnological potentials of anoxygenic phototrophic bacteria I. Production of single-cell protein, vitamins, ubiquinones, hormones, and enzymes and use in waste treatment. Advances in Applied Microbiology, 41(1), 173–226. https://doi.org/10.1016/s0065-2164(08)70310-1

Silva, J., Bernardo, F., Jesus, M., Faria, T., Alves, A., Ratola, N., & Homem, V. (2021). Levels of volatile methylsiloxanes in urban wastewater sludges at various steps of treatment. Environmental Chemistry Letters, 19, 2723–2732. https://doi.org/10.1007/s10311-021-01191-1

Sulaiman, A. A., Amruddin, A., Bahrun, A. H., Yuna, K., & Keela, M. (2024). New challenges and opportunities of Indonesian crude palm oil in international trade. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 94–106. http://dx.doi.org/10.20961/carakatani.v39i1.81957

Talaiekhozani, A., & Rezania, S. (2017). Application of photosynthetic bacteria for removal of heavy metals, macro-pollutants and dye from wastewater: A review. Journal of Water Process Engineering, 19, 312–321. https://doi.org/10.1016/j.jwpe.2017.09.004

Tamrin, K., & Yaser, A. (2017). Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multi-objective optimization on the basis of ration analysis (MOORA). Environmental Science and Pollution Research, 24, 15863–15869. https://doi.org/10.1007/s11356-016-8235-3

Thipraksa, J., Chaijak, P., Michu, P., & Lertworapreecha, M. (2022). Biodegradation and bioelectricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell. Biocatalysis and Agricultural Biotechnology, 43, 102444. https://doi.org/10.1016/j.bcab.2022.102444

Valizadeh, S., Lam, S. S., Ko, C. H., Lee, S. H., Farooq, A., Yu, Y. J., & Park, Y. K. (2021). Biohydrogen production from catalytic conversion of food waste via stream and air gasification using eggshell-and homo-type Ni/Al2O3 catalysts. Bioresource Technology, 320(Part B), 124313. https://doi.org/10.1016/j.biortech.2020.124313

Wang, L., Hao, J., Yu, X., Zhang, B., Sui, J., & Wang, C. (2023). Method development for the identification, extraction and characterization of melanoidins in thermal hydrolyzed sludge. Science of The Total Environment, 864, 161204. https://doi.org/10.1016/j.scitotenv.2022.161204

Xu, H., Wang, L., Lin, C., Zheng, J., Wen, Q., Chen, Y., Wang, Y., & Qi, L. (2020). Improved simultaneous decolorization and power generation in a microbial fuel cell with the sponge anode modified by polyaniline and chitosan. Applied Biochemistry and Biotechnology, 192, 698–718. https://doi.org/10.1007/s12010-020-03346-2

Xu, X., Zhao, Q., Wu, M., Ding, J., & Zhang, W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresource Technology, 225, 402–408. https://doi.org/10.1016/j.biortech.2016.11.126

Yehye, W. A., Rahman, N. A., Ariffin, A., Hamid, S. B. A., Alhadi, A. A., Kadir, F. A., & Yaeghoobi, M. (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 101, 295–312. https://doi.org/10.1016/j.ejmech.2015.06.026

Yu, J., Wang, J., Xia, T., Zhang, X., Geng, B., Wang, Z., Meng, Y., Yu, J., & Huang, S. (2023). Polyphenols and melanoidins characterization in different fractions of Chinese commercial beers. Journal of Food Measurement and Characterization, 17, 6077–6090. https://doi.org/10.1007/s11694-023-02088-z

Refbacks

  • There are currently no refbacks.