Effect of Colchicine and Bio-catharantin on the DNA Relative Content and Stomatal Structure of Black Rice (Oryza sativa L. var. Jeliteng)

Dwi Setyati, Mukhamad Su’udi, Dyah Retno Wulandari, Tri Handoyo, Fuad Bahrul Ulum

Abstract

Black rice (Oryza sativa L. var. Jeliteng), known for its health benefits compared to white rice, faces challenges in productivity. Among varieties, this black rice is popular in Indonesia but shows low yield. Research on improving black rice through genetic manipulation with antimitotic substances is limited. Therefore, this study aims to compare the effects of colchicine and Bio-catharantin on the germination rate, DNA relative content, and stomatal structure of O. sativa L. var. Jeliteng. Seeds were treated with colchicine (0.1%, 0.2%, and 0.3%) and Bio-catharantin (0.1%, 0.2%, 0.3%, 0.4%, and 0.5%) at soaking durations of 12, 24, and 48 hours. Germination was assayed, ploidy was determined using flow cytometry, and stomatal traits, including size and density, were examined microscopically. The results showed that Bio-catharantin did not exhibit any toxic effects on germination rates, whereas colchicine reduced germination starting at 0.2% concentration. Both chemical agents modified the DNA relative content of Jeliteng black rice. Colchicine generally increased stomatal length and width while decreasing stomatal density, with significant changes at 0.3% concentration for 24 hours. Bio-catharantin also altered stomatal traits, enhancing length and width in most cases but significantly reducing density under certain conditions. Bio-catharantin emerged as a promising alternative to colchicine for inducing chromosomal mutations in plants, offering benefits in altered stomatal structures without the toxic effects on germination, compared to colchicine.

Keywords

antimitotic; crop improvement; flow cytometry; germination

Full Text:

PDF

References

Bharati, R., Fernández-Cusimamani, E., Gupta, A., Novy, P., Moses, O., Severová, L., Svoboda, R., & Šrédl, K. (2023). Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Industrial Crops and Products, 198, 116683. https://doi.org/10.1016/J.INDCROP.2023.116683

Bhuvaneswari, G., Thirugnanasampandan, R., & Gogulramnath, M. (2020). Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiology and Molecular Biology of Plants, 26(2), 271. https://doi.org/10.1007/S12298-019-00718-9

Billa, A. T., Lestari, S. S., Daryono, B. S., & Subiastuti, A. S. (2022). Bio-catharantin effects on phenotypic traits and chromosome number of shallots (Allium cepa L. var. ascalonicum ‘Tajuk’). SABRAO Journal of Breeding and Genetics, 54(2), 350–358. https://doi.org/10.54910/sabrao2022.54.2.11

Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., … & Gray, J. E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384. https://doi.org/10.1111/NPH.15344

Chatterjee, J., Thakur, V., Nepomuceno, R., Coe, R. A., Dionora, J., Elmido-Mabilangan, A., … & Quick, W. P. (2020). Natural diversity in stomatal features of cultivated and wild oryza species. Rice, 13(1), 1–20. https://doi.org/10.1186/S12284-020-00417-0

Chen, R., Feng, Z., Zhang, X., Song, Z., & Cai, D. (2021). A new way of rice breeding: Polyploid rice breeding. Plants, 10(3), 422. https://doi.org/10.3390/PLANTS10030422

de Mendiburu, F., & de Mendiburu, M. F. (2019). Package ‘agricolae’. R Package, version, 1(3), 1143–49. Retrieved from https://scholar.google.co.id/scholar?cites=4519011155554250915&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Dwiningsih, Y., & Alkahtani, J. (2023). Potential of pigmented rice variety Cempo Ireng in rice breeding program for improving food sustainability. Journal of Biomedical Research & Environmental Sciences, 4(3), 426–433. https://doi.org/10.37871/JBRES1691

Eng, W.-H., & Ho, W.-S. (2018). Polyploidization using colchicine in horticultural plants: A review. Scientia Horticulturae, 246, 604–617. https://doi.org/10.1016/j.scienta.2018.11.010

Ermayanti, T. M., Wijayanta, A. N., & Ratnadewi, D. (2018). Induksi poliploidi pada tanaman talas (Colocasia esculenta (L.) Schott) kultivar Kaliurang dengan perlakuan kolkisin secara in vitro. Jurnal Biologi Indonesia, 14(1), 91–102. https://doi.org/10.14203/JBI.V14I1.3667

Gaafar, R. M., El Shanshoury, A. R., El Hisseiwy, A. A., AbdAlhak, M. A., Omar, A. F., Abd El Wahab, M. M., & Nofal, R. S. (2017). Induction of apomixis and fixation of heterosis in Egyptian rice Hybrid1 line using colchicine mutagenesis. Annals of Agricultural Sciences, 62(1), 51–60. https://doi.org/10.1016/J.AOAS.2017.03.001

Grouh, H. S. M., Meftahizade, H., Lotfi, N., Rahimi, V., & Baniasadi, B. (2011). Doubling the chromosome number of Salvia hains using colchicine: Evaluation of morphological traits of recovered plants. Journal of Medicinal Plants Research, 5(19), 4892–4898. https://doi.org/10.5897/JMPR.9000459

Hafeez, A., Ali, B., Javed, M. A., Saleem, A., Fatima, M., Fathi, A., … & Soudy, F. A. (2023). Plant breeding for harmony between sustainable agriculture, the environment, and global food security: An era of genomics‐assisted breeding. Planta, 258(5), 97. https://doi.org/10.1007/S00425-023-04252-7

Hodac̆, L., Ulum, F. B., Opfermann, N., Breidenbach, N., Hojsgaard, D., Tjitrosoedirdjo, S. S., … & Hörandl, E. (2016). Population genetic structure and reproductive strategy of the introduced grass Centotheca lappacea in tropical land-use systems in Sumatra. PLoS ONE, 11(1), e0147633. https://doi.org/10.1371/journal.pone.0147633

Indonesian Rice Research Center. (2019). Jeliteng. Retrieved from https://padi-bsip-ppid.pertanian.go.id/doc/64/LAKIN%20BB%20PADI%202019.pdf

Kasim, N., Sjahril, R., Riadi, M., Syaiful, S. A., Ngatimin, S. N. A., Pratiwi, A., & Anwar, I. (2024). Comparative analysis of colchicine and bio-catharanthine as mutagenic agents for polyploid generation in wild passion fruit (Passiflora foetida). Australian Journal of Crop Science, 18(06), 334–341. https://doi.org/10.21475/ajcs.24.18.06.pne53

Kurnianingsih, N., Safitri, A., Septianingrum, E., Ardhiyanti, S. D., & Fatchiyah, F. (2024). Nutritional profiling of Indonesian superior hybrid and biofortification rice varieties: Macronutrient and micronutrient changes under different heat temperatures. Berkala Penelitian Hayati, 30(1), 15–20. https://doi.org/10.23869/bphjbr.30.1.20243

Kurniawan, L., Laili, A. N., Anggraeni, D. S., Qurrotu’ain, S., Wulandari, D. R., & Ulum, F. B. (2023). Poiploidy induction of Indonesian black rice Oryza sativa L. Var. Cempo Ireng with Bio-catharantine. Life Science and Biotechnology, 1(2), 41–47. https://doi.org/10.19184/lsb.v1i2.43753

Luo, L., Han, B., Yu, X., Chen, X., Zhou, J., Chen, W., … & Li, S. (2014). Anti-metastasis activity of black rice anthocyanins against breast cancer: Analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model. Asian Pacific Journal of Cancer Prevention, 15(15), 6219–6225. https://doi.org/10.7314/APJCP.2014.15.15.6219

Lv, Z., Zhu, F., Jin, D., Wu, Y., & Wang, S. (2021). Seed germination and seedling growth of Dendrocalumus brandisii in vitro, and the inhibitory mechanism of colchicine. Frontiers in Plant Science, 12, 784581. https://doi.org/10.3389/FPLS.2021.784581

Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A., & Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants, 8(7), 194. https://doi.org/10.3390/PLANTS8070194

Moghbel, N., Borujeni, M. K., & Bernard, F. (2015). Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering & Biotechnology, 13(1), 1–6. https://doi.org/10.1016/J.JGEB.2015.02.002

Muarifin, A., Perdamaian, A. B. I., Sartika, D., & Daryono, B. S. (2021). Induced polyploidy in Arachis hypogaea L. var. Talam using Catharanthus roseus phenolic extract. Asian Journal of Plant Sciences, 20(2), 263–270. https://doi.org/10.3923/AJPS.2021.263.270

Muhamad, K., Ebana, K., Fukuoka, S., & Okuno, K. (2017). Genetic relationships among improved varieties of rice (Oryza sativa L.) in Indonesia over the last 60 years as revealed by morphological traits and DNA markers. Genetic Resources and Crop Evolution, 64(4), 701–715. https://doi.org/10.1007/s10722-016-0392-1

Nabilah, S., Handoyo, T., Kim, K., & Ubaidillah, M. (2022). Expression analysis of OsSERK, OsLEC1 and OsWOX4 genes in rice (Oryza sativa L.) callus during somatic embryo development. BIOCELL, 46(7), 1633–1641. https://doi.org/10.32604/BIOCELL.2022.019111

Nandariyah, N., Sukaya, S., Purnomo, D., Sutarno, S., Yuniastuti, E., & Az-Zahra, C. D. A. (2023). Study of black rice parents performance and the crossing ability. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 65–74. https://doi.org/10.20961/carakatani.v38i1.60245

Nandariyah, Yuniastuti, E., Purwanto, E., & Astuti, R. D. (2022). Potential lines of black rice crossing with Jeliteng variety and their reciprocals. IOP Conference Series: Earth and Environmental Science, 1016(1), 012017. https://doi.org/10.1088/1755-1315/1016/1/012017

Nofitahesti, I., & Daryono, B. S. (2016). Karakter fenotip kedelai (Glycine max (L.) Merr.) hasil poliploidisasi dengan kolkisin. Scientiae Educatia: Jurnal Pendidikan Sains, 5(2), 90–98. https://doi.org/10.24235/sc.educatia.v5i2.957

Nurhidajah, N., Yonata, D., Bintanah, S., & Pranata, B. (2024). Physicochemical and structural composition of black rice (Oryza sativa) flour from Java, Indonesia. Biodiversitas Journal of Biological Diversity, 25(2), 811–818. https://doi.org/10.13057/biodiv/d250241

Paiman, Ardiyanto, Ansar, M., Effendy, I., & Sumbodo, B. T. (2020). Rice cultivation of superior variety in swamps to increase food security in Indonesia. Reviews in Agricultural Science, 8, 300–309. http://dx.doi.org/10.7831/ras.8.0_300

Phunthong, C., Pitaloka, M. K., Chutteang, C., Ruengphayak, S., Arikit, S., & Vanavichit, A. (2024). Rice mutants, selected under severe drought stress, show reduced stomatal density and improved water use efficiency under restricted water conditions. Frontiers in Plant Science, 15, 1307653. https://doi.org/10.3389/FPLS.2024.1307653

Prasetyo, F. H. H., Sugiharto, B., & Ermawati, N. (2018). Cloning, transformation and expression of cell cycle-associated protein kinase OsWee1 in indica rice (Oryza sativa L.). Journal of Genetic Engineering and Biotechnology, 16(2), 573–579. https://doi.org/10.1016/J.JGEB.2018.10.003

Rathnasamy, S. A., Kambale, R., Elangovan, A., Mohanavel, W., Shanmugavel, P., Ramasamy, G., … & Vellingiri, G. (2023). Altering stomatal density for manipulating transpiration and photosynthetic traits in rice through CRISPR/Cas9 mutagenesis. Current Issues in Molecular Biology, 45(5), 3801–3814. https://doi.org/10.3390/cimb45050245

Rohmah, A., Rahayu, T., & Hayati, A. (2017). Pengaruh pemberian kolkisin terhadap karakter stomata daun zaitun (Olea europeae L.). Jurnal Ilmiah Biosaintropis (Bioscience-Tropic), 2(2), 10–17. https://doi.org/10.33474/E-JBST.V2I2.81

Samadi, N., Naghavi, M. R., Moratalla-López, N., Alonso, G. L., & Shokrpour, M. (2022). Morphological, molecular and phytochemical variations induced by colchicine and EMS chemical mutagens in Crocus sativus L. Food Chemistry: Molecular Sciences, 4, 100086. https://doi.org/10.1016/J.FOCHMS.2022.100086

Shafura, N., Janah, L. N., Huda, M. S., & Daryono, B. S. (2022). Effectiveness of Bio-Catharantin induction to increase red spinach (Alternanthera amoena Voss.) production. Proceedings of the 7th International Conference on Biological Science (ICBS 2021), 22, 528–532. https://doi.org/10.2991/ABSR.K.220406.074

Sitaresmi, T., Hairmansis, A., Widyastuti, Y., Rachmawati, Susanto, U., Wibowo, B. P., … & Nugraha, Y. (2023). Advances in the development of rice varieties with better nutritional quality in Indonesia. Journal of Agriculture and Food Research, 12, 100602. https://doi.org/10.1016/J.JAFR.2023.100602

Suryanti, V., Riyatun, Suharyana, Sutarno, & Saputra, O. A. (2020). Antioxidant activity and compound constituents of gamma-irradiated black rice (Oryza sativa L.) var. Cempo Ireng indigenous of Indonesia. Biodiversitas, 21(9), 4205–4212. https://doi.org/10.13057/biodiv/d210935

Thepthanee, C., Liu, C.-C., Yu, H.-S., Huang, H.-S., Yen, C.-H., Li, Y.-H., Lee, M.-R., & Liaw, E.-T. (2021). Evaluation of phytochemical contents and in vitro antioxidant, anti-inflammatory, and anticancer activities of black rice leaf (Oryza sativa L.) extract and its fractions. Foods, 10(12), 2987. https://doi.org/10.3390/foods10122987

Tossi, V. E., Martínez Tosar, L. J., Laino, L. E., Iannicelli, J., Regalado, J. J., Escandón, A. S., … & Pitta-Álvarez, S. I. (2022). Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science, 13, 869423. https://doi.org/10.3389/fpls.2022.869423

Trojak-Goluch, A., & Skomra, U. (2013). Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breeding Science, 63(4), 393–399. https://doi.org/10.1270/JSBBS.63.393

Tyagi, A., Shabbir, U., Chen, X., Chelliah, R., Elahi, F., Ham, H. J., & Oh, D. H. (2022). Phytochemical profiling and cellular antioxidant efficacy of different rice varieties in colorectal adenocarcinoma cells exposed to oxidative stress. PLoS ONE, 17(6), e0269403. https://doi.org/10.1371/JOURNAL.PONE.0269403

Udall, J. A., & Wendel, J. F. (2006). Polyploidy and crop improvement. Crop Science, 46, S-3-S-14. https://doi.org/10.2135/CROPSCI2006.07.0489TPG

Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: The basis for breeding a new super plant. Frontiers in Plant Science, 10, 419616. https://doi.org/10.3389/FPLS.2019.01326/BIBTEX

Wardana, Slamet, A., Andarias, S. H., Bahrun, A. H., Mantja, K., & Darwis. (2019). Induction of Lili Hujan polyploid (Zephyranthes rosea Lindl.) with ethanolic extract of Tapak Dara leaf (Catharanthus roseus (L.) G. don.) to increase its economic value. IOP Conference Series: Earth and Environmental Science, 235(1), 012102. https://doi.org/10.1088/1755-1315/235/1/012102

Wickham, H., & Wickham, H. (2016). Getting started with ggplot2. ggplot2: Elegant graphics for data analysis, pp.11-31. https://doi.org/10.1007/978-3-319-24277-4_2

Wijayanti, E. D., Safitri, A., Siswanto, D., & Fatchiyah, F. (2023). Indonesian purple rice ferulic acid as a candidate for anti-aging through the inhibition of collagenase and tyrosinase activities. Indonesian Journal of Chemistry, 23(2), 475–488. https://doi.org/10.22146/ijc.79819

Wu, J., Cheng, X., Kong, B., Zhou, Q., Sang, Y., & Zhang, P. (2022). In vitro octaploid induction of Populus hopeiensis with colchicine. BMC Plant Biology, 22(1), 176. https://doi.org/10.1186/s12870-022-03571-3

Xia, D., Zhou, H., Wang, Y., Li, P., Fu, P., Wu, B., & He, Y. (2021). How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. The Crop Journal, 9(3), 598–608. https://doi.org/10.1016/J.CJ.2021.03.013

Yao, P. Q., Chen, J. H., Ma, P. F., Xie, L. H., & Cheng, S. P. (2023). Stomata variation in the process of polyploidization in Chinese chive (Allium tuberosum). BMC Plant Biology, 23(1), 595. https://doi.org/10.1186/s12870-023-04615-y

Yasmeen, S., Khan, M. T., & Khan, I. A. (2020). Revisiting the physical mutagenesis for sugarcane improvement: A stomatal prospective. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-73087-z

Refbacks

  • There are currently no refbacks.