Resistance of Doubled Haploid Rice Lines with Green Super Rice Characters to Bacterial Leaf Blight
Abstract
Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo) is a significant disease attacking rice crops worldwide. This disease attacks at various stages of plant growth and causes significant yield loss. Breeding new varieties resistant to BLB is important to support sustainable agriculture in the future. This study aimed to identify new superior green super rice (GSR) lines resistant to BLB disease. The experiment evaluated the resistance of lowland rice lines obtained from anther culture using a factorial randomized complete block design. The 1st factor was genotype, consisting of 20 lines, 2 checks of commercial varieties (Inpari 42 Agritan GSR and Inpari 18), a resistant check (Conde), and a susceptible check (Taichung Native 1). The 2nd factor was BLB pathotypes (i.e., III, IV, and VIII). Quantitative data on disease severity and severity index were analyzed using analysis of variance and t-Dunnett test at 5% level. The results showed that the interaction between genotype and pathotype affected the disease severity and severity index in both growth phases. The tested lines exhibited varying resistance, from susceptible to resistant, to BLB. Four lines (SN 11, 13, 57, and 58) showed moderate to resistant criteria for BLB disease of 3 pathotypes in both growth phases. The selected lines can be used as a source of parents for breeders and candidates for new superior varieties with BLB resistance properties to support the reduction of synthetic chemical bactericide inputs and control BLB disease. However, further field evaluations are necessary to assess their performance.
Keywords
Full Text:
PDFReferences
Agrios, G. N. (2005). Plant pathology (5th Edition). Burlington, USA: Elsevier Academic Press. https://doi.org/10.1016/C2009-0-02037-6
Ahmad, T. M., Haider, M. S., Randhir, T. O., Randhir, R., & Ahmad, S. R. (2023). Spatial analysis of factors influencing bacterial leaf blight in rice production. Brazilian Journal of Biology, 83(e264249), 1–12. https://doi.org/10.1590/1519-6984.264249
Ahmed, T., Noman, M., Jiang, H., Shahid, M., Ma, C., Wu, Z., … & Li, B. (2022). Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today, 45, 101547. https://doi.org/10.1016/j.nantod.2022.101547
Ali, J., Nicolas, K. L. C., Akther, S., Torabi, A., Ebadi, A. A., Marfori-Nazarea, C. M., & Mahender, A. (2021). Improved anther culture media for enhanced callus formation and plant regeneration in rice (Oryza sativa L.). Plants, 10(839), 1–16. https://doi.org/10.3390/plants10050839
Amanat, M. A., Naeem, M. K., Algwaiz, H. I. M., Uzair, M., Attia, K. A., Alkathani, M. D. F., … & Khan, M. R. (2022). Evaluation of green super rice lines for agronomic and physiological traits under salinity stress. Plants, 11(11), 1461. https://doi.org/10.3390/plants11111461
Arshad, H. M. I., Saleem, K., Khan, J. A., Rashid, M., Atiq, M., Alam, S. S., & Sahi, S. T. (2017). Pathogenic diversity of Xanthomonas oryzae pv. oryzae isolates collected from Punjab Province of Pakistan. European Journal of Plant Pathology, 147, 639–651. https://doi.org/10.1007/s10658-016-1032-5
Ashwini, D., Yadla, H., Padmaja, G., Seetalam, M., Hari, Y., Padmaja, G., Malathi, S., & Rao, P. J. M. (2021). Phenotypic and genotypic screening of certain rice genotypes against bacterial leaf blight (Xanthomonas oryzae pv. oryzae) resistance. Indian Journal of Plant Protection, 49(3), 190–195. Retrieved from https://epubs.icar.org.in/index.php/IJPP/article/view/119344
Asysyuura, Nawangsih, A. A., Mutaqin, K. H., & Sudir. (2017). Pathotype identification of Xanthomonas oryzae pv. oryzae isolates from South Sulawesi. Jurnal Fitopatologi Indonesia, 13(3), 73–80. https://doi.org/10.14692/jfi.13.3.73
Azizi, M. M. F., & Lau, H. Y. (2022). Advanced diagnostic approaches developed for the global menace of rice diseases: A review. Canadian Journal of Plant Pathology, 44(5), 627–651. https://doi.org/10.1080/07060661.2022.2053588
Bakade, R., Ingole, K. D., Deshpande, S., Pal, G., Patil, S. S., Bhattacharjee, S., Prasannakumar, M. K., & Ramu, V. S. (2021). Comparative transcriptome analysis of rice resistant and susceptible genotypes to Xanthomonas oryzae pv. oryzae identifies novel genes to control bacterial leaf blight. Molecular Biotechnology, 63, 719–731. https://doi.org/10.1007/s12033-021-00338-3
Biswas, P. L., Nath, U. K., Ghosal, S., Goswami, G., Uddin, M. S., Ali, O. M., … & Hossain, A. (2021). Introgression of bacterial blight resistance genes in the rice cultivar Ciherang: Response against Xanthomonas oryzae pv. oryzae in the F6 generation. Plants, 10(10), 2048. https://doi.org/10.3390/plants10102048
Bock, C. H., Barbedo, J. G. A., Del Ponte, E. M., Bohnenkamp, D., & Mahlein, A.-K. (2020). From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy. Phytopathology Research, 2, 9. https://doi.org/10.1186/s42483-020-00049-8
Cao, J., Chu, C., Zhang, M., He, L., Qin, L., Li, X., & Yuan, M. (2020). Different cell wall‐degradation ability leads to tissue‐specificity between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola. Pathogens, 9(3), 187. https://doi.org/10.3390/pathogens9030187
Cao, Y., Xu, H., Song, J., Yang, Y., Hu, X., Wiyao, K. T., & Zhai, Z. (2022). Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress. Plant Methods, 18(1), 67. https://doi.org/10.1186/s13007-022-00898-8
Chen, S., Wang, C., Su, J., Feng, A., Zhu, X., & Zeng, L. (2018). Differential detection and analysis of pathotypes and differentiation against Xanthomonas oryzae pv. oryzae in Southern China. Agricultural Biotechnology, 7(1), 92–96. Retrieved from https://www.proquest.com/scholarly-journals/differential-detection-analysis-pathotypes/docview/2135998497/se-2
Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Hasan, M. M., Oladosu, Y. A., … & Olalekan, K. K. (2019). Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Molecular Biology Reports, 46(1), 1519–1532. https://doi.org/10.1007/s11033-019-04584-2
Deb, S., Gokulan, C. G., Nathawat, R., Patel, H. K., & Sonti, R. V. (2022). Suppression of XopQ–XopX-induced immune responses of rice by the type III effector XopG. Molecular Plant Pathology, 23(5), 634–648. https://doi.org/10.1111/mpp.13184
Deng, W. L., Lin, H. A., Shih, Y. C., Kuo, C. C., Tzeng, J. Y., Liu, L. Yu D., Huang, S. T., Huang, C. M., & Chung, C. L. (2016). Genotypic and pathotypic diversity of Xanthomonas oryzae pv. oryzae strains in Taiwan. Journal of Phytopathology, 164(10), 745–759. https://doi.org/10.1111/jph.12495
Ding, X., Huang, X., Sun, L., Wu, J., & Liu, J. (2019). Influence of abscisic acid-biosynthesis inhibitor fluridone on the feeding behavior and fecundity of Nilaparvata lugens. Insects, 10(2), 57. https://doi.org/10.3390/insects10020057
Du, D., Zhang, C., Xing, Y., Lu, X., Cai, L., Yun, H., … & He, G. (2021). The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19. Plant Biotechnology Journal, 19(5), 1052–1064. https://doi.org/10.1111/pbi.13530
Duy, P. N., Lan, D. T., Thu, H. P., Thu, H. P. T., Thanh, H. N., Pham, N. P., … & Pham, X. H. (2021). Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS ONE, 16(9), e0255470. https://doi.org/10.1371/journal.pone.0255470
Habib, A., Abdullah, A., & Puyam, A. (2022). Visual estimation: A classical approach for plant disease estimation. Trends in plant disease assessment, pp. 19–45. Singapore: Springer. https://doi.org/10.1007/978-981-19-5896-0_2
Hamid, M. I., & Ghazanfar, M. U. (2022). Integrated management of rice diseases. Modern techniques of rice crop production (pp. 401–421). Springer. https://doi.org/10.1007/978-981-16-4955-4_22
Huerta, A. I., Delorean, E. E., Bossa-Castro, A. M., Tonnessen, B. W., Raghavan, C., Corral, R., … & Leach, J. E. (2021). Resistance and susceptibility QTL identified in a rice MAGIC population by screening with a minor-effect virulence factor from Xanthomonas oryzae pv. oryzae. Plant Biotechnology Journal, 19(1), 51–63. https://doi.org/10.1111/pbi.13438
IRRI. (2014). Standard evaluation system (SES) for rice (5th ed.). Manila, Philippines: International Rice Research Institute. Retrieved from https://www.scribd.com/document/333585255/SES-5th-Edition
Jewel, Z. A., Ali, J., Pang, Y., Mahender, A., Acero, B., Hernandez, J., Xu, J., & Li, Z. (2019). Developing green super rice varieties with high nutrient use efficiency by phenotypic selection under varied nutrient conditions. The Crop Journal, 7(3), 368–377. https://doi.org/10.1016/j.cj.2019.01.002
Ji, Z., Wang, C., & Zhao, K. (2018). Rice routes of countering Xanthomonas oryzae. International Journal of Molecular Sciences, 19(10), 3008. https://doi.org/10.3390/ijms19103008
Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., & Peng, J. (2020). Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice, 13(3), 1–12. https://doi.org/10.1186/s12284-019-0358-y
Khannetah, K. R., Ramchander, S., Leon, M. T. A. P., Shoba, D., Saravanan, S., Kannan, R., Yasin, J. K., & Pillai, M. A. (2021). Genetic diversity analysis in indigenous rice (Oryza sativa L.) germplasm for bacterial leaf blight (Xanthomonas oryzae pv. oryzae) (BB) using resistance genes-linked markers. Euphytica, 217(7), 145. https://doi.org/10.1007/s10681-021-02862-4
Koduru, L., Kim, H. Y., Lakshmanan, M., Mohanty, B., Lee, Y. Q., Lee, C. H., & Lee, D. Y. (2020). Genome-scale metabolic reconstruction and in silico analysis of the rice leaf blight pathogen, Xanthomonas oryzae. Molecular Plant Pathology, 21(4), 527–540. https://doi.org/10.1111/mpp.12914
Li, Z., & Ali, J. (2017). Breeding green super rice (GSR) varieties for sustainable rice cultivation. Achieving sustainable cultivation of rice (pp. 109–129). https://doi.org/10.19103/as.2016.0003.05
Liu, W., Liu, J., Triplett, L., Leach, J. E., & Wang, G. L. (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52, 213–241. https://doi.org/10.1146/annurev-phyto-102313-045926
Ministry of Agriculture of Indonesia. (2021). Standar operasional prosedur penilaian calon varietas dalam rangka pelepasan varietas tanaman pangan. Jakarta: Ministry of Agriculture of Indonesia.
Ni, Z., Cao, Y., Jin, X., Fu, Z., Li, J., Mo, X., He, Y., Tang, J., & Huang, S. (2021). Engineering resistance to bacterial blight and bacterial leaf streak in rice. Rice, 14(38), 1–5. https://doi.org/10.1186/s12284-021-00482-z
Noer, Z., Hasanuddin, Lisnawita, & Suryanto, D. (2018). Pathotype profile of Xanthomonas oryzae pv. oryzae isolates from North Sumatera. IOP Conference Series: Earth and Environmental Science, 122(1), 012142. https://doi.org/10.1088/1755-1315/122/1/012142
Nurhayatini, R., Budiasih, R., Amalia, L., Parlinah, L., & Suryana, Y. (2020). Effect of Corynebacterium against Xanthomonas campestris causes of bacterial leaf blight in the paddy plant (Oryza sativa L.) varieties Inpari 13. Proceedings of the International Conference on Agriculture, Social Sciences, Education, Technology and Health (ICASSETH 2019) (pp. 115–117). Atlantis Press. https://doi.org/10.2991/assehr.k.200402.026
Nurhidayah, S., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Lubis, I. (2023). Agronomic performance and selection of green super rice doubled haploid lines from anther culture. Biodiversitas, 24(2), 819–826. https://doi.org/10.13057/biodiv/d240218
Pradhan, S. K., Nayak, D. K., Mohanty, S., Behera, L., Barik, S. R., Pandit, E., Lenka, S., & Anandan, A. (2015). Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice, 8(19), 1–14. https://doi.org/10.1186/s12284-015-0051-8
Putri, R. K., Purwoko, B. S., Dewi, I. S., Lubis, I., & Yuriyah, S. (2023). Resistance of doubled haploid rice lines to bacterial leaf blight (Xanthomonas oryzae pv. oryzae). SABRAO Journal of Breeding and Genetics, 55(3), 717–728. https://doi.org/10.54910/sabrao2023.55.3.10
Quibod, I. L., Atieza-Grande, G., Oreiro, E. G., Palmos, D., Nguyen, M. H., Coronejo, S. T., … & Oliva, R. (2020). The green revolution shaped the population structure of the rice pathogen Xanthomonas oryzae pv. oryzae. ISME Journal, 14(2), 492–505. https://doi.org/10.1038/s41396-019-0545-2
Rachman, B., Ariningsih, E., Sudaryanto, T., Ariani, M., Septanti, K. S., Adawiyah, C. R., … & Yuniarti, E. (2022). Sustainability status, sensitive and key factors for increasing rice production: A case study in West Java, Indonesia. PLoS ONE, 17(12), e0274689. https://doi.org/10.1371/journal.pone.0274689
Sanya, D. R. A., Syed-Ab-Rahman, S. F., Jia, A., Onésime, D., Kim, K.-M., Ahohuendo, B. C., & Rohr, J. R. (2022). A review of approaches to control bacterial leaf blight in rice. Journal of Microbiology and Biotechnology, 38(7), 113. https://doi.org/10.1007/s11274-022-03298-1
Saputra, M. H., Sutomo, Humaida, N., & Hadiyan, Y. (2023). Smart farming: Modeling distribution of Xanthomonas campestris pv. oryzae as a leaf blight-causing bacteria in rice plants. IOP Conference Series: Earth and Environmental Science, 1133(1), 012026. https://doi.org/10.1088/1755-1315/1133/1/012026
Sastro, Y., Suprihanto, Hairmansis, A., Hasmi, I., Rumanti, I. A., Susanti, Z., … & Arismiati, D. (2021). Deskripsi varietas unggul baru padi. Sukamandi, Indonesia: Agricultural Research and Development Center, Ministry of Agriculture. Retrieved from https://www.researchgate.net/publication/356696369
Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640–656. https://doi.org/10.1038/s41579-023-00900-7
Statistics Indonesia. (2024a). Impor beras menurut negara asal utama, 2017-2023. Retrieved from https://www.bps.go.id/id/statistics-table/1/MTA0MyMx/impor-beras-menurut-negara-asal-utama--2000-2022.html
Statistics Indonesia. (2024b). Luas panen, produksi, dan produktivitas padi menurut provinsi. Retrieved from https://www.bps.go.id/id/statistics-table/2/MTQ5OCMy/luas-panen--produksi--dan-produktivitas-padi-menurut-provinsi.html
Subehi, M., Abdurachman, A. A., Hasanah, L., Gultom, R., Jaka, S., Uliyah, Sulistiyowati, H., Martono, H. D., Heruwaty, & Indah, K. (2020). Statistics of climate, crop pest and climate change impact 2017-2020. Center for Agricultural Data and Information System, Secretariate General, Ministry of Agriculture. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/Statistik_Iklim,_OPT_dan_DPI_2017-2020.pdf
Sudir, & Yuliani, D. (2016). Composition and distribution of Xanthomonas oryzae pv. oryzae pathotypes, the pathogen of rice bacterial leaf blight in Indonesia. Agrivita, 38(2), 174–185. https://doi.org/10.17503/agrivita.v38i2.588
Susanto, U., Gumelar, A. I., & Ali, J. (2022). Genetic variability and heritability of agronomic traits of selected green super rice (GSR) lines in Indonesia. IOP Conference Series: Earth and Environmental Science, 978(1), 012014. https://doi.org/10.1088/1755-1315/978/1/012014
Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
Vishakha, K., Das, S., Banerjee, S., Mondal, S., & Ganguli, A. (2020). Allelochemical catechol comprehensively impedes bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae. Microbial Pathogenesis, 149, 104559. https://doi.org/10.1016/j.micpath.2020.104559
Wijayanto, A. K., Prasetyo, L. B., Hudjimartsu, S. A., Sigit, G., & Hongo, C. (2024). Textural features for BLB disease damage assessment in paddy fields using drone data and machine learning: Enhancing disease detection accuracy. Smart Agricultural Technology, 8, 100498. https://doi.org/10.1016/j.atech.2024.100498
Yasmin, S., Zaka, A., Imran, A., Zahid, M. A., Yousaf, S., Rasul, G., Arif, M., & Mirza, M. S. (2016). Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PLoS ONE, 11(8), e0160688. https://doi.org/10.1371/journal.pone.0160688
Yu, C., Nguyen, D. P., Ren, Z., Liu, J., Yang, F., Tian, F., Fan, S., & Chen, H. (2020). The RpoN2-PilRX regulatory system governs type IV pilus gene transcription and is required for bacterial motility and virulence in Xanthomonas oryzae pv. oryzae. Molecular Plant Pathology, 21(5), 652–666. https://doi.org/10.1111/mpp.12920
Yugander, A., Sundaram, R. M., & Ladhalakshmi, D. (2017). Virulence profiling of Xanthomonas oryzae pv. oryzae isolates, causing bacterial blight of rice in India. European Journal of Plant Pathology, 149, 171–191. https://doi.org/10.1007/s10658-017-1176-y
Yuriyah, S., Darnaedi, D., Setia, T. M., Windarsih, G., & Utami, D. W. (2021). Phenotype and genotype variability of interspecific rice lines related to bacterial leaf blight resistance (Xanthomonas oryzae pv. oryzae) character. Biodiversitas, 22(10), 4123–4130. https://doi.org/10.13057/biodiv/d221001
Zafar, K., Khan, M. Z., Amin, I., Mukhtar, Z., Yasmin, S., Arif, M., Ejaz, K., & Mansoor, S. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science, 11, 532184. https://doi.org/10.3389/fpls.2020.00575
Zafar, S. A., Arif, M. H., Uzair, M., Rashid, U., Naeem, M. K., Rehman, O. U., … & Khan, M. R. (2022). Agronomic and physiological indices for reproductive stage heat stress tolerance in green super rice. Agronomy, 12(8), 1907. https://doi.org/10.3390/agronomy12081907
Zhu, Y., Su, H., Liu, X. X., Sun, J. F., Xiang, L., Liu, Y. J., … & Li, Y. (2024). Identification of NADPH oxidase genes crucial for rice multiple disease resistance and yield traits. Rice, 17(1), 1–15. https://doi.org/10.1186/s12284-023-00678-5
Refbacks
- There are currently no refbacks.