Nutrient Potential Mapping of Soils for Tea Plants Through Laboratory and Geostatistical Approaches
Abstract
The assessment of nutrient potential is crucial for enhancing tea production and achieving sustainable agricultural goals. Thus, the present study was carried out to assess and map the soil nutrient potential for tea plants through laboratory and geostatistical methods. A total of 74 random soil samples with 3 replications were collected from 0 to 9 cm (topsoil) and 9 to 18 cm (subsoil) depths from Oodaleah Tea Garden (OTG) which belongs to Fatikchhari Upazila of Chattogram District in Bangladesh. All the laboratory analyses were done following standard procedures and maps of individual soil indices were prepared through the Inverse Distance Weighted (IDW) interpolation technique using ArcGIS 10.7 software. The integration of maps for nutrient potential was performed following the Analytic Hierarchy Process (AHP). The mean concentrations of organic matter (OM), total nitrogen (TN), available phosphorus (AvP), available potassium (AvK), and available calcium (AvCa) were found higher at 0 to 9 cm compared to 9 to 18 cm soil depth with significant (p < 0.05) difference among the sampling sites. The maps of individual soil parameters revealed distinct spatial differences at 0 to 9 cm and 9 to 18 cm soil depths. The total study area covered 5.99 km2. Integrated nutrient potential mapping showed that moderately suitable (44.15%) accounted for the largest proportion, followed by highly suitable (26.03%), generally suitable (21.67%), marginally suitable (7.06%), and unsuitable area (1.08%) of the tea plantation suitability evaluation. The integrated map of nutrient potential will aid in better management of the tea soils.
Keywords
Full Text:
PDFReferences
Absar, N., Abedin, J., Rahman, M. M., Miah, M. H., Siddique, N., Kamal, M., & Alsubaie, A. (2021). Radionuclides transfer from soil to tea leaves and estimation of committed effective dose to the Bangladesh populace. Life, 11(4), 282. https://doi.org/10.3390/life11040282
Adhikary, S., Khan, M. Z., Arobe, S., Dey, S., & Billah, S. M. (2019). Soil chemical analysis of kazi and kazi organic tea garden and compared to ordinary tea gardens of Bangladesh. Open Journal of Soil Science, 9(6), 91–102. https://doi.org/10.4236/ojss.2019.96006
Alam, A. F. M. (2003). Tea cultivation manual in Bangladesh at small scale. Bangladesh Tea research Institute, Sreemangal, Moulvibazar, Bangladesh.
Alam, M. S., Akter, S., Shemul, S., Chowdhury, T. R., & Ara, S. (2022). Assessing the quality and heavy metal contamination of soil in tea gardens around Magurchara gas blowout in Bangladesh using multivariate and soil quality index methods. Journal of Hazardous Materials Advances, 7, 100127. https://doi.org/10.1016/j.hazadv.2022.100127
Azizan, F. A., Zalani, F. M., Nagarajan, A., Aznan, A. A., & Ruslan, R. (2019). Analysis of spatial distribution of soil moisture content for different soil layers in mango greenhouse. IOP Conference Series: Materials Science and Engineering, 557(1), 012070. https://doi.org/10.1088/1757-899X/557/1/012070
Baruah, B. K., Das, B., Medhi, C., & Misra, A. K. (2013). Fertility status of soil in the tea garden belts of Golaghat District, Assam, India. Journal of Chemistry, 2013(1), 983297. https://doi.org/10.1155/2013/983297
Bishnu, A., Saha, T., Ghosh, P.B., Mazumdar, D., Chakraborty, A., & Chakrabarti, K. (2009). Effect of pesticide residues on microbiological and biochemical soil indicators in tea gardens of Darjeeling Hills, India. World Journal of Agricultural Sciences, 5(6), 690–697. Retrieved from https://idosi.org/wjas/wjas5(6)/6.pdf
Biswas, A., & Motalib, M. A. (2012). Comparative study on tea soils of South India and Bangladesh. Tea Journal of Bangladesh, 41, 27–36. Retrieved from https://btri.portal.gov.bd/sites/default/files/files/btri.portal.gov.bd/page/78377489_e4c4_4024_8697_19b7a1d370ab/Tea%20J.%20Bangladesh%202012.pdf#page=31
Biswas, J. C., & Naher, U. A. (2019). Soil nutrient stress and rice production in Bangladesh. Advances in Rice Research for Abiotic Stress Tolerance, pp. 431–445. Sawston, United Kingdom: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00021-6
Bouyoucos, G. J. (1936). Directions for making mechanical analyses of soils by the hydrometer method. Soil Science, 42(3), 225–230. Retrieved from https://journals.lww.com/soilsci/citation/1936/09000/Directions_for_Making_Mechanical_Analyses_of_Soils.7.aspx
Bremner, J. M., & Mulnaney, C. S. (1982). Nitrogen-total. Methods of Soil Analysis: Chemical and Microbiological Properties (part-2), pp. 595–624. Madison, Wisconsin, USA: American Society of Agronomy, Inc. Soil Science Society of America, Inc. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Chen, P., Li, C., Chen, S., Li, Z., Zhang, H., & Zhao, C. (2022). Tea cultivation suitability evaluation and driving force analysis based on AHP and geodetector results: A case study of Yingde in Guangdong, China. Remote Sensing, 14, 2412. https://doi.org/10.3390/rs14102412
Chenu, C., Rumpel, C., Védère, C., & Barré, P. (2024). Methods for studying soil organic matter: Nature, dynamics, spatial accessibility, and interactions with minerals. Soil microbiology, Ecology and Biochemistry, pp. 369–406. Elsevier. https://doi.org/10.1016/B978-0-12-822941-5.00013-2
Chien, H. H., Tokuda, M., Minh, D. V., Kang, Y., Iwasaki, K., & Tanaka, S. (2019). Soil physicochemical properties in a high-quality tea production area of Thai Nguyen Province in northern region, Vietnam. Soil Science and Plant Nutrition, 65(1), 73–81. https://doi.org/10.1080/00380768.2018.1539310
Chiranjit, S., & Swain, K. C. (2016). Land suitability evaluation criteria for agricultural crop selection: A review. Agricultural Reviews, 37(2), 125–132. https://doi.org/10.18805/ar.v37i2.10737
English, N. B., Weltzin, J. F., Fravolini, A., Thomas, L., & Williams, D. G. (2005). The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. Journal of Arid Environments, 63(1), 324–343. https://doi.org/10.1016/j.jaridenv.2005.03.013
Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033
Han, W., Li, X., Yan, P., Zhang, L., & Ahammed, G. J. (2018). Tea cultivation under changing climatic conditions. Global tea science: current status and future needs, pp. 1–18. Cambridge: Burleigh Dodds Science Publishing Ltd. https://doi.org/10.19103/AS.2017.0036.19
Huq, S. M. I., & Alam, M. D. (2005). A handbook on analyses of soil, plant and water. University of Dhaka, Bangladesh: BACER-DU, pp. 245. Retrieved from https://scholar.google.co.id/scholar?cluster=10761556566446617686&hl=id&as_sdt=2005&sciodt=0,5
Huq, S. M. I. & Shoaib, J. U. M. (2013). The soils of Bangladesh. Dordrecht: Springer, pp. 165. https://doi.org/10.1007/978-94-007-1128-0
Islam, M. M. R., Afroz, H., Khatun, R., Islam, M., & Hoque, M. (2014). Phosphorus fractionation in acid soil of Lakkatura tea garden, Sylhet, Bangladesh. Journal of Soil and Nature, 7, 1–6. Retrieved from https://ggfjournals.com/content/papers/MIN-434
Islam, M. N., & Sanaullah, A. F. M. (2011). Physico-chemical properties of soil of Rangapani tea estate of Bangladesh. Journal of Scientific Research, 3(3), 683–688. https://doi.org/10.3329/jsr.v3i3.7503
Islam, M. N., Tareq, A. R. M., & Ahmed, M. S. (2013). Primary nutrient status and some related physical properties of the soils of Karnaphuli tea estate, Chittagong. Analytical Chemistry: An Indian Journal, 13(5), 191–196. Retrieved from https://www.tsijournals.com/abstract/primary-nutrient-status-and-some-related-physical-properties-of-the-soils-of-karnaphuli-tea-estate-chittagong-565.html
Jahan, I., Shopan, J., Rahman, M. M., Sarkar, A., Baset, M. A., Zhang, Z., Li, X., Ahammed, G. J., & Hasan, M. K. (2022). Long-term traditional fertilization alters tea garden soil properties and tea leaf quality in Bangladesh. Agronomy, 12(9), 2128. https://doi.org/10.3390/agronomy12092128
Jin, C. W., Zheng, S. J., He, Y. F., Zhou, G., & Zhou, Z. X. (2005). Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere, 59(8), 1151–1159. https://doi.org/10.1016/j.chemosphere.2004.11.058
Khadka, D., Lamichhane, S., Giri, R. K., Chalise, B., Amgain, R., & Joshi, S. (2020). Geostatistical based soil fertility mapping of Horticultural Research Station, Rajikot, Jumla, Nepal. Journal of Agriculture and Natural Resources, 3(2), 257–275. https://doi.org/10.3126/janr.v3i2.32513
Khan, M. Z., Islam, M. R., Salam, A. B. A., & Ray, T. (2021). Spatial variability and geostatistical analysis of soil properties in the diversified cropping regions of Bangladesh using geographic information system techniques. Applied and Environmental Soil Science, 2021(1), 6639180. https://doi.org/10.1155/2021/6639180
Kingsley, J., Lawani, S. O., Esther, A. O., Ndiye, K. M., Sunday, O. J., & Penížek, V. (2019). Predictive mapping of soil properties for precision agriculture using geographic information system (GIS) based geostatistics models. Modern Applied Science, 13(10), 60–77. https://doi.org/10.5539/mas.v13n10p60
Kögel-Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139–162. https://doi.org/10.1016/S0038-0717(01)00158-4
Leena, H. U., Premasudha, B. G., Panneerselvam, S., & Basavaraja, P. K. (2021). Pedometric mapping for soil fertility management-A case study. Journal of the Saudi Society of Agricultural Sciences, 20(2), 128–135. https://doi.org/10.1016/j.jssas.2020.12.008
Li, S., Li, H., Yang, C., Wang, Y., Xue, H., & Niu, Y. (2016). Rates of soil acidification in tea plantations and possible causes. Agriculture, Ecosystems and Environment, 233, 60–66. https://doi.org/10.1016/j.agee.2016.08.036
Liu, Y., Zhang, M., Li, Y., Zhang, Y., Huang, X., Yang, Y., Zhu, H., Xiong, H., & Jiang, T. (2023). Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of Southwest China. Agriculture, 13(4), 849. https://doi.org/10.3390/agriculture13040849
Loide, V. (2004). About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agronomy Research, 2(1), 71–82. Retrieved from https://agronomy.emu.ee/vol021/p2109.pdf
Muzib, S., Rahman, M. S., Haque, H. A., Tanu, F. Z., & Hakim, A. (2023). Quality of tea soil induced by cultivation period. Asian Soil Research Journal, 7(3), 30–42. https://doi.org/10.9734/asrj/2023/v7i3134
Murphy, J., & Riley, P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
Nath, T. N. (2014). Soil texture and total organic matter content and its influences on soil water holding capacity of some selected tea growing soils in Sivasagar district of Assam, India. International Journal of Chemical Sciences, 12(4), 1419–1429. Retrieved from https://www.tsijournals.com/abstract/soil-texture-and-total-organic-matter-content-and-its-influences-on-soil-water-holding-capacity-of-some-selected-tea-gro-11815.html
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. Methods of Soil Analysis: Chemical and Microbiological Properties (part-2), pp. 539–579. Madison, Wisconsin, USA: American Society of Agronomy, Inc. Soil Science Society of America, Inc. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Niranjana, K. S., & Viswanath, S. (2008). Root characteristics of tea [Camellia sinensis (L.) O. Kuntze] and silver oak [Grevillea robusta (A. Cunn)] in a mixed tea plantation at Munnar, Kerala. Journal of Tropical Agriculture, 46(1–2), 25–31. Retrieved from https://jtropag.kau.in/index.php/ojs2/article/view/184
Pereira, P., Brevik, E. C., Muñoz-Rojas, M., Miller, B. A., Smetanova, A., Depellegrin, D., … & Cerdà, A. (2017). Soil mapping and processes modeling for sustainable land management. Soil Mapping and Process Modeling for Sustainable Land Use Management, pp. 29–60. Elsevier. https://doi.org/10.1016/B978-0-12-805200-6.00002-5
Rash, A. J. H., Khodakarami, L., Muhedin, D. A., Hamakareem, M. I., & Ali, H. F. H. (2024). Spatial modeling of geotechnical soil parameters: Integrating ground-based data, RS technique, spatial statistics and GWR model. Journal of Engineering Research, 12(1), 75–85. https://doi.org/10.1016/j.jer.2023.10.026
Rendana, M., Rahim, S. A., Idris, W. M. R., Rahman, Z. A., & Lihan, T. (2022). Agricultural land evaluation using GIS-based matching method in highland areas for oil palm cultivation. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 100–110. http://dx.doi.org/10.20961/carakatani.v37i1.57441
Rothenberg, D. O. N., Abbas, F., Mei, X., Yan, C., Zeng, Z., & Huang, Y. (2022). Metabarcoding of organic tea (Camellia sinensis L.) chronosequence plots elucidates soil acidification-induced shifts in microbial community structure and putative function. Applied Soil Ecology, 178, 104580. https://doi.org/10.1016/j.apsoil.2022.104580
Roy, S., Nath, B., & Chowdhury, N. (2021). Study of spatio-temporal variations of soil salinity in the south-eastern coastal part of Bangladesh. Soil Science Annual, 72(3), 144725. https://doi.org/10.37501/soilsa/144725
Saha, A. K., Rahman, S. H., & Hoque, S. (2015). Requirement of lime in tea growing areas to improve growth and yield of tea in Bangladesh. Tea Journal of Bangladesh, 44, 10–18. Retrieved from https://scholar.google.co.id/scholar?cluster=16267999546920785459&hl=id&as_sdt=2005&sciodt=0,5
Sahu, N., Das, P., Saini, A., Varun, A., Mallick, S. K., Nayan, R., Aggarwal, S. P., Pani, B., Kesharwani, R., & Kumar, A. (2023). Analysis of tea plantation suitability using geostatistical and machine learning techniques: A case of Darjeeling Himalaya, India. Sustainability, 15(13), 10101. https://doi.org/10.3390/su151310101
Sanaullah, A. F. M., Akhtaruzzaman, M., & Uddin, M.A. (2016). Effect of topography and soil depth on clay content, organic matter content, active acidity, reserve acidity and cation exchange capacity of some tea soils of Bangladesh. Journal of Scientific Research, 8(2), 229–235. https://doi.org/10.3329/jsr.v8i2.26867
Sengupta, A., & Thangavel, M. (2023). Analysis of the effects of climate change on cotton production in Maharashtra State of India using statistical model and GIS mapping. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 152–162. http://dx.doi.org/10.20961/carakatani.v38i1.64377
Soinne, H., Keskinen, R., Räty, M., Kanerva, S., Turtola, E., Kaseva, J., Nuutinen, V., Simojoki, A., & Solo, T. (2021). Soil organic carbon and clay content as deciding factors for net nitrogen mineralization and cereal yields in boreal mineral soils. Eurasian Journal of Soil Science, 72, 1497–1512. https://doi.org/10.1111/ejss.13003
Sun, D. Z., Wang, W. X., Huang, Y., Song, Sh. R., Xie, J. X., Lai, J. G., & Peng G. (2021). Monitoring and analysis of tea root parameters based on CI600 in situ root imager. Applied Ecology and Environmental Research, 17(6), 15301–15309. http://dx.doi.org/10.15666/aeer/1706_1530115309
Thomas, G. W. (1982). Exchangeable cations. Methods of Soil Analysis: Chemical and Microbiological Properties (part-2), pp. 159–161. Madison, Wisconsin, USA: American Society of Agronomy, Inc. Soil Science Society of America, Inc. https://doi.org/10.2134/agronmonogr9.2.2ed.c9
USDA. (1951). Soil Survey Manual. Handbook No. 18, Soil Survey Staff, Bureau of Plant Industry, Soils and Agricultural Engineering, United States Department of Agriculture, Washington DC. Retrieved from https://scholar.google.co.id/scholar?cites=15888158533293657207&as_sdt=2005&sciodt=0,5&hl=id
Vasu, D., Tiwary, P., Chandran, P., & Singh, S. K. (2020). Soil quality for sustainable agriculture. Nutrient Dynamics for Sustainable Crop Production, pp. 41–66. Singapore: Springer. https://doi.org/10.1007/978-981-13-8660-2_2
Wang, Y. H., Hong, L., Wang, Y. C., Yang, Y. W., Lin, L. W., Ye, J. H., & Wang, H. B. (2022). Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves. Allelopathy Journal, 55(1), 51. https://doi.org/10.26651/allelo.j/2022-55-1-1370
Wei, H., Guenet, B., Vicca, S., Nunan, N., Asard, H., AbdElgawad, H., Shen, W., & Janssens, I. A. (2014). High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biology and Biochemistry, 77, 100–108. https://doi.org/10.1016/j.soilbio.2014.06.006
Xing, W., Zhou, C., Li, J., Wang, W., He, J., Tu, Y., Cao, X., & Zhang, Y. (2022). Suitability evaluation of tea cultivation using machine learning technique at town and village scales. Agronomy, 12(9), 2010. https://doi.org/10.3390/agronomy12092010
Yan, P., Wu, L., Wang, D., Fu, J., Shen, C., Li, X., & Wenyan, H. (2020). Soil acidification in Chinese tea plantations. Science of the Total Environment, 715, 136963. https://doi.org/10.1016/j.scitotenv.2020.136963
Yang, W. L. (2021). Remedy for soil acidification at tea plantations in Anxi, Fujian. Acta Tea Sin, 62(2), 89–93. https://doi.org/10.3389/fpls.2022.1055900
Ye, J., Wang, Y., Hong, L., Jia, X., Kang, J., Lin, S., Wu, Z., & Wang, H. (2022). Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Frontier in Plant Science, 13, 1055900. https://doi.org/10.3389/fpls.2022.1055900
Zhang, J. (2018). Research on the soil nutrient characteristics of tea plantation. IOP Conference Series: Earth and Environmental Science, 208(1), 012079. https://doi.org/10.1088/1755-1315/208/1/012079
Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q., & Shen, W. (2010). The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 326, 511–522. https://doi.org/10.1007/s11104-009-9988-y
Refbacks
- There are currently no refbacks.