The Effect of Silver Nanoparticles Stabilized with Tannic Acid for Nano-Priming on Zea mays L. Seeds Germination
Abstract
Silver nanoparticles (AgNPs) have various benefits for application in the agricultural sector, such as nano-seed priming to enhance seedling growth and development. In this research, the effectiveness of AgNPs sizes and concentration to enhance Zea mays seeds germination has been investigated. The AgNPs were synthesized using various concentrations of tannic acid (0.025, 0.25, and 5 mM) to produce AgNPs with different sizes to know their optimum size and concentration. The synthesized AgNPs were characterized using a UV-Vis spectrophotometer to determine the absorption spectrum of AgNPs within 400 to 500 nm. Besides that, a transmission electron microscope (TEM) was used to determine the size and shape of the AgNPs, and an atomic absorption spectrophotometer was used to determine the concentration. The results show AgNPs with sizes of 13.39±2.40, 27.25±4.09, and 46.7±10.75 nm, respectively. Subsequently, AgNPs with concentrations of ~8, ~16, and ~24 mg l-1 were exposed to Z. mays seeds for 24 hours, then germinated for 14 days. The results revealed that AgNPs with a size of ~27 nm and a concentration of ~24 mg l-1 showed the highest germination rate and growth despite the control and other treatments. This indicates that the AgNPs with those properties have the potential as a seed nano-priming agent.
Keywords
Full Text:
PDFReferences
Acharya, P., Jayaprakasha, G. K., Crosby, K., & Patil, B. S. (2017). Nanopriming: An effective technique to improve seed germination, growth and quality in onion (Allium cepa L.). American Society for Horticultural Science Conference: Poster Presentation. United States: College Station. Retrieved from https://ashs.confex.com/ashs/2017/webprogramarchives/Paper26718.html
Alqadi, M. K., Abo Noqtah, O. A., Alzoubi, F. Y., Alzouby, J., & Aljarrah, K. (2014). pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Materials Science-Poland, 32, 107–111. https://doi.org/10.2478/s13536-013-0166-9
Bairwa, P., Kumar, N., Devra, V., & Abd-Elsalam, K. A. (2023). Nano-biofertilizers synthesis and applications in agroecosystems. Agrochemicals, 2, 118–134. https://doi.org/10.3390/agrochemicals2010009
Bastús, N. G., Merkoçi, F., Piella, J., & Puntes, V. (2014). Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chemistry of Materials, 26(9), 2836–2846. https://doi.org/10.1021/cm500316k
Biba, R., Tkalec, M., Cvjetko, P., Peharec Štefanić, P., Šikić, S., Pavoković, D., & Balen, B. (2021). Silver nanoparticles affect germination and photosynthesis in tobacco seedlings. Acta Botanica Croatica, 80(1), 1–11. https://doi.org/10.37427/botcro-2020-029
Cherian, T., Ali, K., Saquib, Q., Faisal, M., Wahab, R., & Musarrat, J. (2020). Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents. Biomolecules, 10(2), 169. https://doi.org/10.3390/biom10020169
Dhand, C., Dwivedi, N., Loh, X. J., Ying, A. N. J., Verma, N. K., Beuerman, R. W., ... & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. Rsc Advances, 5(127), 105003–105037. http://dx.doi.org/10.1039/C5RA19388E
Fahimirad, S., Ajalloueian, F., & Ghorbanpour, M. (2019). Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicology and environmental safety, 168, 260–278. https://doi.org/10.1016/j.ecoenv.2018.10.017
Garza-Alonso, C. A., Juárez-Maldonado, A., González-Morales, S., Cabrera-De la Fuente, M., Cadenas-Pliego, G., Morales-Díaz, A. B., ... & Benavides-Mendoza, A. (2023). ZnO nanoparticles as potential fertilizer and biostimulant for lettuce. Heliyon, 9(1), e12787. https://doi.org/10.1016/j.heliyon.2022.e12787
Gupta, S. D., Agarwal, A., & Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and environmental safety, 161, 624–633. https://doi.org/10.1016/j.ecoenv.2018.06.023
Guzmán-Báez, G. A., Trejo-Téllez, L. I., Ramírez-Olvera, S. M., Salinas-Ruíz, J., Bello-Bello, J. J., Alcántar-González, G., ... & Gómez-Merino, F. C. (2021). Silver nanoparticles increase nitrogen, phosphorus, and potassium concentrations in leaves and stimulate root length and number of roots in tomato seedlings in a hormetic manner. Dose-Response, 19(4), 15593258211044576. https://doi.org/10.1177/15593258211044576
Handayani, W., Imawan, C., Umar, A., Yunilawati, R., & Djuhana, D. (2021). Structural, optical, and potential broad-spectrum antibacterial properties of CuO-Ag nanoparticles biosynthesized using the extract of Diospyros discolor Willd. Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(4), 045007. https://doi.org/10.1088/2043-6262/ac458a
Hasan, M., Mehmood, K., Mustafa, G., Zafar, A., Tariq, T., Hassan, S. G., ... & Shu, X. (2021). Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce. Coatings, 11(2), 225. https://doi.org/10.3390/coatings11020225
Hasnain, M. S., Javed, M. N., Alam, M. S., Rishishwar, P., Rishishwar, S., Ali, S., ... & Beg, S. (2019). Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Materials Science and Engineering: C, 99, 1105–1114. https://doi.org/10.1016/j.msec.2019.02.061
Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A., & Kyzas, G. Z. (2022). Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 97(2), 375–418. https://doi.org/10.1007/s10725-021-00782-w
ISTA. (1972). OECD standards, schemes and guide relating to varietal certification of seed. Proceeding of the International Seed Testing Association, 36(3), 347–576.
Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New South Wales, 138, 65–75. https://doi.org/10.5962/p.361564
Kandhol, N., Singh, V. P., Ramawat, N., Prasad, R., Chauhan, D. K., Sharma, S., ... & Tripathi, D. K. (2022). Nano-priming: Impression on the beginner of plant life. Plant Stress, 5, 100091. https://doi.org/10.1016/j.stress.2022.100091
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. Journal of Nanostructure in Chemistry, 8, 217–254. https://doi.org/10.1007/s40097-018-0267-4
Khatoon, N., Mazumder, J. A., & Sardar, M. (2017). Biotechnological applications of green synthesized silver nanoparticles. Journal of Nanosciences: Current research, 2(107), 2572–0813. https://doi.org/10.4172/2572-0813.1000107
Krishnasamy, R., Natesh, R., & Obbineni, J. M. (2024). Efficient ROS scavenging improves the growth and yield in black gram (Vigna mungo (L.) Hepper) after seed priming and treatment using biosynthesized silver nanoparticles with Pongamia pinnata (L.) Pierre leaf extract. Journal of Plant Growth Regulation, 43, 2422–2438. https://doi.org/10.1007/s00344-024-11276-0
Lasso-Robledo, J. L., Torres, B., & Peralta-Videa, J. R. (2022). Do all Cu nanoparticles have similar applications in nano-enabled agriculture?. Plant Nano Biology, 1, 100006. https://doi.org/10.1016/j.plana.2022.100006
León-silva, S., Arrieta-cortes, R., Fernández-luqueño, F., & López-valdez, F. (2018). Agricultural nanobiotechnology. Modern Agriculture for a Sustainable Future. Springer Cham. https://doi.org/10.1007/978-3-319-96719-6
Lesilolo, M. K., Patty, J., & Tetty, N. (2012). Penggunaan desikan abu dan lama simpan terhadap kualitas benih jagung (Zea mays L.) pada penyimpanan ruang terbuka. Agrologia, 1(1), 288772. http://dx.doi.org/10.30598/a.v1i1.298
Liu, F., Liu, X., Chen, F., & Fu, Q. (2021). Tannic acid: A green and efficient stabilizer of Au, Ag, Cu and Pd nanoparticles for the 4-nitrophenol reduction, Suzuki–Miyaura coupling reactions and click reactions in aqueous solution. Journal of Colloid and Interface Science, 604, 281–291. https://doi.org/10.1016/j.jcis.2021.07.015
Loza, K., & Epple, M. (2019). Synthesis of metallic and metal oxide particles. Biological Responses to Nanoscale Particles: Molecular and Cellular Aspects and Methodological Approaches, 3–27. Springer, Cham. http://dx.doi.org/10.1007/978-3-030-12461-8_1
Loza, K., Heggen, M., & Epple, M. (2020). Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Advanced functional materials, 30(21), 1909260. https://doi.org/10.1002/adfm.201909260
Maluin, F. N., Hussein, M. Z., Nik Ibrahim, N. N. L., Wayayok, A., & Hashim, N. (2021). Some emerging opportunities of nanotechnology development for soilless and microgreen farming. Agronomy, 11(6), 1213. https://doi.org/10.3390/agronomy11061213
Matras, E., Gorczyca, A., Pociecha, E., Przemieniecki, S. W., & Oćwieja, M. (2022). Phytotoxicity of silver nanoparticles with different surface properties on monocots and dicots model plants. Journal of Soil Science and Plant Nutrition, 22(2), 1647–1664. https://doi.org/10.1007/s42729-022-00760-9
Millour, M., Gagné, J. P., Doiron, K., Lemarchand, K., & Pelletier, É. (2020). Silver nanoparticles aggregative behavior at low concentrations in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125191. https://doi.org/10.1016/j.colsurfa.2020.125191
Moradi, F., Sedaghat, S., Moradi, O., & Arab Salmanabadi, S. (2021). Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorganic and Nano-metal Chemistry, 51(1), 133–142. https://doi.org/10.1080/24701556.2020.1769662
Nair, P. M. G., & Chung, I. M. (2014). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105–113. https://doi.org/10.1016/j.chemosphere.2014.03.056
Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, M., ... & Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 254. https://doi.org/10.1186/s12951-022-01423-8
Noshad, A., Hetherington, C., & Iqbal, M. (2019). Impact of AgNPs on seed germination and seedling growth: A focus study on its antibacterial potential against Clavibacter michiganensis subsp. michiganensis infection in Solanum lycopersicum. Journal of Nanomaterials, 2019(1), 6316094. https://doi.org/10.1155/2019/6316094
Odeniyi, M. A., Okumah, V. C., Adebayo-Tayo, B. C., & Odeniyi, O. A. (2020). Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustainable Chemistry and Pharmacy, 15, 100197. https://doi.org/10.1016/j.scp.2019.100197
Orlowski, P., Zmigrodzka, M., Tomaszewska, E., Ranoszek-Soliwoda, K., Czupryn, M., Antos-Bielska, M., ... & Krzyzowska, M. (2018). Tannic acid-modified silver nanoparticles for wound healing: The importance of size. International Journal of Nanomedicine, 991–1007. https://doi.org/10.2147/IJN.S154797
Parveen, A., & Rao, S. (2015). Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. Journal of Cluster Science, 26, 693–701. https://doi.org/10.1007/s10876-014-0728-y
Pereira, A. D. E. S., Oliveira, H. C., Fraceto, L. F., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267. https://doi.org/10.3390/nano11020267
Pintos, B., de Diego, H., & Gomez-Garay, A. (2024). Nanopriming-induced enhancement of cucumber seedling development: Exploring biochemical and physiological effects of silver nanoparticles. Agronomy, 14(8), 1866. https://doi.org/10.3390/agronomy14081866
Pu, S., Yan, C., Huang, H., Liu, S., & Deng, D. (2019). Toxicity of nano-CuO particles to maize and microbial community largely depends on its bioavailable fractions. Environmental Pollution, 255, 113248. https://doi.org/10.1016/j.envpol.2019.113248
Ranoszek-Soliwoda, K., Tomaszewska, E., Małek, K., Celichowski, G., Orlowski, P., Krzyzowska, M., & Grobelny, J. (2019). The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces B: Biointerfaces, 177, 19–24. https://doi.org/10.1016/j.colsurfb.2019.01.037
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A., Tripathy, M., & Paliwal, N. (2019). Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics, 15, 102565. https://doi.org/10.1016/j.rinp.2019.102565
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 9(5), 2673–2702. https://doi.org/10.1039/c8ra08982e
Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., ... & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207. https://doi.org/10.1016/j.jksus.2020.10.004
Shalaby, T. I., Mahmoud, O. A., El Batouti, G. A., & Ibrahim, E. E. (2015). Green synthesis of silver nanoparticles: Synthesis, characterization and antibacterial activity. Nanoscience and Nanotechnology, 5(2), 23–29. https://doi.org/10.5923/j.nn.20150502.01
Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558. https://doi.org/10.3390/molecules24142558
Sharma, D., Afzal, S., & Singh, N. K. (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, 64–75. https://doi.org/10.1016/j.jbiotec.2021.06.014
Shelar, A., Nile, S. H., Singh, A. V., Rothenstein, D., Bill, J., Xiao, J., ... & Patil, R. (2023). Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nano-Micro Letters, 15(1), 54. https://doi.org/10.1007/s40820-023-01025-5
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 1–28. https://doi.org/10.1186/s12951-018-0334-5
Siddiqi, K. S., Rashid, M., Tajuddin, Husen, A., & Rehman, S. (2019). Biofabrication of silver nanoparticles from Diospyros montana, their characterization and activity against some clinical isolates. BioNanoScience, 9, 302–312. https://doi.org/10.1007/s12668-019-00629-9
Sonawane, H., Arya, S., Math, S., & Shelke, D. (2021). Myco-synthesized silver and titanium oxide nanoparticles as seed priming agents to promote seed germination and seedling growth of Solanum lycopersicum: A comparative study. International Nano Letters, 11(4), 371–379. https://doi.org/10.1007/s40089-021-00346-w
Song, K., & He, X. (2021). How to improve seed germination with green nanopriming. Seed Science and Technology, 49(2), 81–92. https://doi.org/10.15258/sst.2021.49.2.01
Tolisano, C., & Del Buono, D. (2023). Biobased: Biostimulants and biogenic nanoparticles enter the scene. Science of The Total Environment, 885, 163912. https://doi.org/10.1016/j.scitotenv.2023.163912
Tortella, G., Rubilar, O., Pieretti, J. C., Fincheira, P., de Melo Santana, B., Fernández-Baldo, M. A., ... & Seabra, A. B. (2023). Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics, 12(2), 338. https://doi.org/10.3390/antibiotics12020338
Velsankar, K., Vinothini, V., Sudhahar, S., Kumar, M. K., & Mohandoss, S. (2020). Green synthesis of CuO nanoparticles via Plectranthus amboinicus leaves extract with its characterization on structural, morphological, and biological properties. Applied Nanoscience, 10, 3953–3971. https://doi.org/10.1007/s13204-020-01504-w
Yagız, A. K., & Çalışkan, M. E. (2024). Effects of TiO2 nano-priming on tomato seed germination and plant development. Journal of Animal & Plant Sciences, 34(1), 62–72. https://doi.org/10.36899/JAPS.2024.1.0695
Yan, A., & Chen, Z. (2019). Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003
Yilmaz, M., Yilmaz, A., Karaman, A., Aysin, F., & Aksakal, O. (2021). Monitoring chemically and green-synthesized silver nanoparticles in maize seedlings via surface-enhanced Raman spectroscopy (SERS) and their phytotoxicity evaluation. Talanta, 225, 121952. https://doi.org/10.1016/j.talanta.2020.121952
Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534
Refbacks
- There are currently no refbacks.