The Prebiotic Index of Dried-Growol Made with Different Cassava Varieties and Cooking Methods

Chatarina Wariyah, Nurul Huda, Agus Slamet

Abstract

Cassava is a staple food source of carbohydrates that contain high starch levels. However, low amylose starch consumption can result in increased postprandial blood sugar. Therefore, it is necessary to provide food based on cassava, such as dried-growol, which gives a feeling satiety for a long time and has a prebiotic effect. This research aimed to evaluate the effects of cassava varieties and cooking methods on the resistant starch (RS) content and the prebiotic index of dried-growol produced. This research was carried out in a completely randomized factorial design with two factors, namely cassava variety (M = Mentega, L = Lanting, and K = Ketan) and dried-growol cooking method (Au = Autoclave, St = Steaming, and PC = Pressure cooker). Dried-growol was processed through preparation, fermentation, boiling, cooling, and drying. The cassava and dried-growol were analyzed for their moisture, starch, amylose, and RS content, while the prebiotic index was analyzed on dried-growol. Prebiotic index testing used two cultures of lactic acid bacteria: Lactobacillus rhamnosus and Lactobacillus plantarum. The results showed that RS levels were only influenced by cassava varieties. Dried-growols from Lanting variety, cooked with steaming (L-St) and with a pressure cooker (L-PC), contain high RS, ranging between 22.51 and 27.03 g 100 g-1 dry matter, and have potential as prebiotic food as indicated by the increased viability of L. rhamnosus and L. plantarum bacteria grown in media with cooked dried-growol supplements of L-St or L-PC, with a prebiotic index between 0.82 and 0.90. Thus, dried-growol has the potential to be a functional prebiotic food that can serve as a staple food that is beneficial for health.

Keywords

dried-growol; functional-food; prebiotic; resistant-starch; retrogradation

Full Text:

PDF

References

Abioye, V. F., Adeyemi, I. A., Akinwande, B. A, Kulakow, P., & Maziya-Dixon, B. (2018). Effect of autoclaving on the formation of resistant starch from two Nigeria cassava (Manihot esculenta) varieties. Food Research, 2(5), 468–473. https://doi.org/10.26656/fr.2017.2(5).205

Afrianto, S., & Wariyah, C. (2020). Characteristics and acceptability of growol made with variation of cassava varieties and fermentation duration. Agritech, 40(3), 254–261. https://doi.org/10.22146/agritech.50228

AOAC. (2005). Official methods of analylis of the Association of Official Analytical Chemists. Retrieved from https://www.researchgate.net/publication/292783651_AOAC_2005

Ariani, L. N., Estiasih, T., & Martati, E. (2017). Physicochemical characteristic of cassava (Manihot utilisima) with different cyanide level. Jurnal Teknologi Pertanian, 18(2), 119–128. https://doi.org/10.21776/ub.jtp.2017.018.02.12

Armah, J. O., Appiah, V., Egblewogbe, M. N., & Ocloo, F. C. (2024). Characterization of flour produced from gamma irradiated dried cassava (Manihot esculenta) chips. Radiation Physics and Chemistry, 218, 111651. https://doi.org/10.1016/j.radphyschem.2024.111651

Asare, I. K., & Darfour, B. (2024). Physicochemical and functional properties of cassava starch from different varieties as affected by gamma irradiation. International Journal of Advanced Biological and Biomedical Research, 12(1), 11–27. https://doi.org/10.48309/ijabbr.2024.2013764.1465

Bamigbade, G. B., Subhash, A. J., Kamal-Eldin, A., Nyström, L., & Ayyash, M. (2022). An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics. Molecules, 27(18), 5947. https://doi.org/10.3390/molecules27185947

Conde, L. A., Kebede, B., Leong, S. Y., & Oey, I. (2022). Effect of high hydrostatic pressure processing on starch properties of cassava flour. Applied Sciences, 12(19), 10043. https://doi.org/10.3390/app121910043

Directorate General of Food Crops. (2023). Annual report 2023. Retrieved from https://tanamanpangan.pertanian.go.id/assets/front/uploads/document/LAPORANTAHUNAN2023.pdf

Figueroa-González, I., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M., & Cruz-Guerrero, A. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 39(3), 747–753. https://doi.org/10.1590/fst.07318

Goni, I., Garcia-Diz, L., Ma, E., & Saura-Calixto, F. (1996). Analysis of resistant starch: A method for foods and food products. Food Chemistry, 56(4), 445–449. https://doi.org/10.1016/0308-8146(95)00222-7

Guo, Q., Zhang, M., Mujumdar, A. S., & Yu, D. (2024). Drying technologies of novel food resources for future foods: Progress, challenges and application prospects. Food Bioscience, 60, 104490. https://doi.org/10.1016/j.fbio.2024.104490

Halake, N. H., & Chinthapalli, B. (2020). Fermentation of traditional African cassava based foods: microorganisms role in nutritional and safety value. Journal of Experimental Agriculture International, 42(9), 56–65. https://doi.org/10.9734/JEAI/2020/v42i930587

Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2021). Extraction and characterisation of cassava starch cultivated in different locations in Sabah, Malaysia. Food Research, 5(3), 44–52. https://doi.org/10.26656/fr.2017.5(3).550

Hidayati, D. (2010). Growth pattern of lactic acid bacteria during soy milk fermentation. Teknologi Hasil Pertanian, 3(2), 72–76. Retrieved from https://www.researchgate.net/publication/292783651_AOAC_2005

Jyothsna, E., & Hymavathi, T. V. (2017). Resistant starch: Importance, categories, food sources and physiological effects. Journal of Pharmacognosy and Phytochemistry, 6(2), 67–69. Retrieved from https://www.phytojournal.com/archives?year=2017&vol=6&issue=2&ArticleId=1794&si=false

Karunarathna, S., Wickramasinghe, I., Brennan, C., Truong, T., Navaratne, S., & Chandrapala, J. (2024). Investigating the impact of boiling and pressure cooking on resistant starch levels in food. International Journal of Food Science & Technology, 59(6), 3907–3917. https://doi.org/10.1111/ijfs.17138

Kaur, P., Kaur, H., Aggarwal, R., Bains, K., Mahal, A. K., Gupta, O. P., ... & Singh, K. (2023). Effect of cooking and storage temperature on resistant starch in commonly consumed Indian wheat products and its effect upon blood glucose level. Frontiers in Nutrition, 10, 1284487. https://doi.org/10.3389/fnut.2023.1284487

Kotatha, D., Wandee, Y., Udchumpisai, W., & Pattarapanawan, M. (2023). Fortification of dietary fiber in cassava pulp by conversion of the remaining starch to resistant starch. Future Foods, 8, 100265. https://doi.org/10.1016/j.fufo.2023.100265

Leite, T. S., de Jesus, A. L. T., Schmiele, M., Tribst, A. A., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT-Food Science and Technology, 76, 361–369. https://doi.org/10.1016/j.lwt.2016.07.036

Liang, T., Xie, X., Wu, L., Li, L., Yang, L., Jiang, T., ... & Wu, Q. (2023). Metabolism of resistant starch RS3 administered in combination with Lactiplantibacillus plantarum strain 84-3 by human gut microbiota in simulated fermentation experiments in vitro and in a rat model. Food Chemistry, 411, 135412. https://doi.org/10.1016/j.foodchem.2023.135412

Lertwanawatana, P., Frazier, R. A., & Niranjan, K. (2015). High pressure intensification of cassava resistant starch (RS3) yields. Food Chemistry, 181, 85–93. https://doi.org/10.1016/j.foodchem.2015.02.005

Liu, S., Reimer, M., & Ai, Y. (2020). In vitro digestibility of different types of resistant starches under high-temperature cooking conditions. Food Hydrocolloids, 107, 105927. https://doi.org/10.1016/j.foodhyd.2020.105927

Martínez, R. M., Cruz, M., Loredo-Treviño, A., Martínez, J. L., Ruiz, H. A., Rodríguez-Jasso, R. M., & Belmares, R. (2024). Evaluation of the addition of cassava flour fermented with lactic acid bacteria on the sensorial and nutritional properties of a baked product. Food and Humanity, 3, 100329. https://doi.org/10.1016/j.foohum.2024.100329

Mas’ud, & Wahyuningsih, S. (2023). Statistic of food consumption 2023. Center For Agricultural Data and Information System. Secretariate General-Ministry of Agriculture. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Statsitik_Konsumsi_Pangan_2023.pdf

Matita, I., Soedirga, L., & Andriani, I. (2024). Utilization of chia seeds powder in wet noodle substituted with modified cassava flour. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 140–153. http://dx.doi.org/10.20961/carakatani.v39i1.77711

Mesele, S. A., Soremi, P. S., & Adigun, J. K. (2024). Exploring farmer’s assessment of soil quality and root yield in cassava-based cropping systems. Journal of the Saudi Society of Agricultural Sciences, 23(8), 533–541. https://doi.org/10.1016/j.jssas.2024.06.003

Mutiara, C., & Bolly, Y. Y. (2019). Identification of agricultural activities and soil fertility in the cultivation area of Nuabosi cassava. Caraka Tani: Journal of Sustainable Agriculture, 34(1), 22–30. http://dx.doi.org/10.20961/carakatani.v34i1.25708

National Research and Innovation Agency of Indonesia. (2022). Riset padi untuk tingkatkan produksi beras nasional. Retrieved from https://www.brin.go.id/news/109616/riset-padi-untuk-tingkatkan-produksi-beras-nasional

Nurdjanah, S., Susilawati, S., Hasanudin, U., & Anitasari, A. (2020). Karakteristik morfologi dan kimiawi beberapa varietas ubi kayu manis asal Kecamatan Palas, Kabupaten Lampung Selatan berdasarkan umur panen yang berbeda. Jurnal Agroteknologi, 14(02), 126–136. https://doi.org/10.19184/j-agt.v14i02.17383

Nwachukwu, I. D., & Simonyan, K. J. (2015). Some engineering properties of cassava tuber related to its peeling mechanization. Umudike Journal of Engineering And Technology (UJET), 1(1), 12–24. Retrieved from https://repository.mouau.edu.ng/work/view/some-engineering-properties-of-cassava-tuber-related-to-its-peeling-mechanization-7-2

Ogbo, F. C., & Okafor, E. N. (2015). The resistant starch content of some cassava based Nigerian foods. Nigerian Food Journal, 33(1), 29–34. https://doi.org/10.1016/j.nifoj.2015.04.007

Palframan, R., Gibson, G. R., & Rastall, R. A. (2003). Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Letters in Applied Microbiology, 37(4), 281–284. https://doi.org/10.1046/j.1472-765x.2003.01398.x

Putra, R. P. (2020). Potensi prebiotik tepung pisang yang dimodifikasi menggunakan pemanasan autoklaf dilanjutkan dengan retrogradasi. Jurnal Pendidikan Teknologi Pertanian, 6(2), 349–360. https://doi.org/10.26858/jptp.v6i2.14746

Putri, W. D. R., Haryadi, H., & Marseno, D. W. (2012). Isolation and characterization of amylolytic lactic acid bacteria during growol fermentation, an Indonesian traditional food. Jurnal Teknologi Pertanian, 13(1), 52–60. Retrieved from https://jtp.ub.ac.id/index.php/jtp/article/view/356

Rahayu, A. (2023). 10 largest rice consuming countries in the world. Retrieved from https://data.goodstats.id/statistic/10-negara-konsumen-beras-terbesar-di-dunia-wMW9z

Reza, M. A., Hossain, M. A., Lee, S., Kim, J., & Park, S. (2016). In vitro prebiotic effects and quantitative analysis of Bulnesia sarmientoi extract. Journal of Food and Drug Analysis, 24(4), 822–830. https://doi.org/10.1016/j.jfda.2016.03.015

Richirose, & Soedirga, L. C. (2023). Utilization of cassava-jicama composite flour in making gluten-free biscuits with different types of fats. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 244–259. http://dx.doi.org/10.20961/carakatani.v38i2.71993

Rozi, F., Santoso, A. B., Mahendri, I. G. A. P., Hutapea, R. T. P., Wamaer, D., Siagian, V., ... & Syam, A. (2023). Indonesian market demand patterns for food commodity sources of carbohydrates in facing the global food crisis. Heliyon, 9(6). e16809. https://doi.org/10.1016/j.heliyon.2023.e16809

Statistics of Indonesia. (2024). Harvested area and rice production in Indonesia. Retrieved from https://www.bps.go.id/id/pressrelease/2024/03/01/2375/pada-2023--luas-panen-padi-mencapai-sekitar-10-21-juta-hektare-dengan-produksi-padi-sebesar-53-98-juta-ton-gabah-kering-giling--gkg-.html

Sullivan, W. R., Hughes, J. G., Cockman, R. W., & Small, D. M. (2017). The effects of temperature on the crystalline properties and resistant starch during storage of white bread. Food Chemistry, 228, 57–61. https://doi.org/10.1016/j.foodchem.2017.01.140

Tan, C. Y., Arifin, N. N. M., & Sabran, M. R. (2024). Banana peels as potential prebiotic and functional ingredient. Jurnal Gizi dan Pangan, 19(Supp. 1), 119–126. Retrieved from https://journal.ipb.ac.id/index.php/jgizipangan/article/view/53506

Tekin, T., & Dincer, E. (2023). Effect of resistant starch types as a prebiotic. Applied Microbiology and Biotechnology, 107, 491–515. https://doi.org/10.1007/s00253-022-12325-y

Valcheva, R., & Dieleman, L. A. (2016). Prebiotics: Definition and protective mechanisms. Best Practice & Research Clinical Gastroenterology, 30(1), 27–37. https://doi.org/10.1016/j.bpg.2016.02.008

Wahyuni, T. S., & Noerwijati, K. (2021). Cassava genotypes selection for high yield and high starch content in advanced yield trials. IOP Conference Series: Earth and Environmental Science, 733(1), 012127. https://doi.org/10.1088/1755-1315/733/1/012127

Wang, M., Chen, X., Zhou, L., Li, Y., Yang, J., Ji, N., Xiong, L., & Sun, Q. (2022). Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. Plantarum. LWT, 154, 112572. https://doi.org/10.1016/j.lwt.2021.112572

Wariyah, C., Riyanto, B. K., & Kanetro, B. (2019). Effect of cooling methods and drying temperatures on the resistant starch content and acceptability of dried-Growol. Pakistan Journal of Nutrition, 18(12), 1139–1144. https://doi.org/10.3923/pjn.2019.1139.1144

Williams, P. C., Kuzina, F. D., & Hlynka, I. (1970). A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chemistry, 47, 411–420. Retrieved from https://www.cerealsgrains.org/publications/cc/backissues/1970/Documents/cc1970a58.html

Yan, Q., Wang, W., Fan, Z., Li, B., Wei, Y., Yu, R., … & Fang, Z. (2024). Gut microbes mediate prebiotic-like effects of resistant starch. Food Bioscience, 61, 104627. https://doi.org/10.1016/j.fbio.2024.104627

Zhang, C., Qiu, M., Wang, T., Luo, L., Xu, W., Wu, J., … & Wang, X. (2021). Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chemistry, 351, 129340. https://doi.org/10.1016/j.foodchem.2021.129340

Zhang, T., Hong, S., Zhang, J., Liu, P., Li, S., Wen, Z., … & Corke, H. (2024). The effect of lactic acid bacteria fermentation on physicochemical properties of starch from fermented proso millet flour. Food Chemistry, 437, 137764. https://doi.org/10.1016/j.foodchem.2023.137764

Refbacks

  • There are currently no refbacks.