Phytohormone-Based Biostimulants as an Alternative Mitigating Strategy for Horticultural Plants Grown Under Adverse Multi-Stress Conditions: Common South African Stress Factors

Zenzile Khetsha, Elmarie Van der Watt, Maxson Masowa, Lesetja Legodi, Sanelisiwe Satshi, Lethabo Sadiki, Kenoni Moyo


Worldwide, it has been recorded extensively that plants are subjected to severe abiotic and biotic stressors. The scientific research community has widely reported that multi-abiotic stressors cause horticultural crop losses, accounting for at least 50 to 70% of the crop yield and quality losses. Therefore, this review focused on the detrimental effects caused by abiotic stress factors occurring in single-, combined- and multi-cell stresses on horticultural plants worldwide, along with the best production systems practices for mitigation during and post-single and combined abiotic or multi-stress damages. A conclusion and recommendation could be reached using the pool of research material, which constituted research articles, reviews, book chapters, thesis, research short communications and industrial short communications from at least twenty-five years ago. Findings showed that some of the leading abiotic stresses are single- and combined abiotic stressors like water deficit, salinity, soil pH, phosphate deficiency, wounding, soil density and pot size. Established commercial and smallholder farmers are globally adapting to plant growth regulators and biostimulants as part of their production systems. However, as much as the effectiveness of biostimulants containing humic acids, algal extracts, plant growth-promoting microorganisms and phytohormones has been reported to promote plant development under multi-stress, only a few studies are focusing on organic phytohormone-based biostimulants on horticultural crops grown under adverse multi stress factoring. In conclusion, the review recommends alternative solutions for emerging South African farmers and growers who cannot afford agricultural insurance options and energy alternatives on the common single- and combined abiotic- or multi-stress-factors.


abiotic stress; moisture stress; plant growth regulators; salinity stress; wounding stress

Full Text:



Aazami, M. A., Maleki, M., Rasouli, F., & Gohari, G. (2023). Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. ‘Sultana’) under salinity stress. Scientific Reports, 13(1), 883.

Abou-Sreea, A. I. B., Azzam, C. R., Al-Taweel, S. K., Abdel-Aziz, R. M., Belal, H. E. E., Rady, M. M., Abdel-Kader, A. A. S., Majrashi, A., & Khaled, K. A. M. (2021). Natural biostimulant attenuates salinity stress effects in chili pepper by remodeling antioxidant, ion, and phytohormone balances, and augments gene expression. Plants, 10(11), 2316.

Aires, E. S., Aragão, C. A., Gomes, I. L. S., De Souza, G. N., De Andrade, I. G. V., De Oliveira, A. B. N., Bezerra, W. C., & Yuri, J. E. (2020). Growth and production of crisphead lettuce cultivars in protected cultivation and high temperatures. Revista Brasileirade Ciencias Agrarias, 15(1), 1–9.

Al Murad, M., Khan, A. L., & Muneer, S. (2020). Silicon in horticultural crops: Crosstalk, signaling, and tolerance mechanism under salinity stress. Plants, 9(4), 460.

Alam, M., Islam, N., Ahmad, S., Hossen, M., & Islam, M. (2016). Effect of different staking methods and stem pruning on yield and quality of summer tomato. Bangladesh Journal of Agricultural Research, 41(3), 419–432.

Ali, O., Ramsubhag, A., & Jayaraman, J. (2018). Ascophyllum nodosum (Linnaeus) Le Jolis seaweed extract improves seed germination in tomato and sweet pepper under NaCl-induced salt stress. Tropical Agriculture, 95(2), 141–147. Retrieved from

Al-Khayri, J. M., Rashmi, R., Toppo, V., Chole, P. B., Banadka, A., Sudheer, W. N., Nagella, P., Shehata, W. F., Al-Mssallem, M. Q., Alessa, F. M., Almaghasla, M. I., & Rezk, A. A. S. (2023). Plant secondary metabolites: The weapons for biotic stress management. Metabolites, 13(6), 716.

Al-Quraan, N. A., Al-Ajlouni, Z. I., & Qawasma, N. F. (2021). Physiological and biochemical characterization of the gaba shunt pathway in pea (Pisum sativum L.) seedlings under drought stress. Horticulturae, 7(6), 125.

Al-Soghir, M. M. A., Mohamed, A. G., El-Desoky, M. A., & Awad, A. A. M. (2022). Comprehensive assessment of soil chemical properties for land reclamation purposes in the Tochka area, Egypt. Sustainability, 14(23), 15611.

Ambrosini, S., Sega, D., Santi, C., Zamboni, A., Varanini, Z., & Pandolfini, T. (2021). Evaluation of the potential use of a collagen-based protein hydrolysate as a plant multi-stress protectant. Frontiers in Plant Science, 12, 600623.

Andreotti, C., Rouphael, Y., Colla, G., & Basile, B. (2022). Rate and timing of application of biostimulant substances to enhance fruit tree tolerance toward environmental stresses and fruit quality. Agronomy, 12(3), 603.

Arif, M., Jan, T., Riaz, M., Fahad, S., Arif, M. S., Shakoor, M. B., Amanullah, & Rasul, F. (2018). Advances in rice research for abiotic stress tolerance: Agronomic approaches to improve rice production under abiotic stress. Advances in Rice Research for Abiotic Stress Tolerance, 585–614.

Aslam, M., Khubaib, H. M., Awan, B. A., Ali, A., Fatima, S., Ashraf, A., Ikhlaque, H. Z., & Bilal, H. (2022). Agricultural insights for development of genetically modified foods, horticultural crops and role of nanotechnology. Haya: The Saudi Journal of Life Sciences, 7(5), 158–162.

Awad, A. A. M., Sweed, A. A. A., Rady, M. M., Majrashi, A., & Ali, E. F. (2021). Rebalance the nutritional status and the productivity of high CaCO3-stressed sweet potato plants by foliar nourishment with zinc oxide nanoparticles and ascorbic acid. Agronomy, 11(7), 1443.

Awkes, M. M. (2010). Comparison of calcium ameliorants and coal ash in alleviating the effects of subsoil acidity on maize root development near Middelburg, Mpumalanga (Doctoral dissertation). Stellenbosch: University of Stellenbosch. Retrieved from

Baharudin, N. F., & Osman, N. I. (2023). Plant development, stress responses, and secondary metabolism under ethylene regulation. Plant Stress, 7, 100146.

Balali, G. R., Hadi, M. R., Yavari, P., Bidram, H., Naderi, A. G., & Eslami, A. (2008). Effect of pot size, planting date and genotype on minituber production of Marfona potato cultivar. African Journal of Biotechnology, 7(9), 1265–1270. Retrieved from

Balliu, A., Zheng, Y., Sallaku, G., Fernández, J. A., Gruda, N. S., & Tuzel, Y. (2021). Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae, 7(8), 24.

Bhattacharya, A. (2021). Effect of soil water deficit on growth and development of plants: A review. Soil Water Deficit and Physiological Issues in Plants, pp. 393–488. Springer, Singapore.

Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, 837.

Beheiry, H. R., Awad, A. A. M., & Hussein, H. A. Z. (2023). Response of multi-stressed Olea europaea trees to the adjustment of soil pH by acidifying agents: Impacts on nutrient uptake and productivity. Agronomy, 13(2), 539.

Benamirouche, S., Chouial, M., Guechi, W., & Nanfack, R. F. (2020). Radicle length and container size effects on root deformities in the mediterranean oak quercus suber l. Bois & Forets Des Tropiques, 343, 17–26.

Bilal, S., Shahzad, R., Asaf, S., Imran, M., Al-Harrasi, A., & Lee, I. J. (2023). Efficacy of endophytic SB10 and glycine betaine duo in alleviating phytotoxic impact of combined heat and salinity in Glycine max L. via regulation of redox homeostasis and physiological and molecular responses. Environmental Pollution, 316, 120658.

Bisson, C., Adams, N. B. P., Stevenson, B., Brindley, A. A., Polyviou, D., Bibby, T. S., Baker, P. J., Hunter, C. N., & Hitchcock, A. (2017). The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nature Communications, 8(1), 1746.

Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: A review. Biological Agriculture and Horticulture, 31(1), 1–17.

Calderon-Villalobos, L. I., Tan, X., Zheng, N., & Estelle, M. (2010). Auxin perception-structural insights. Cold Spring Harbor Perspectives in Biology, 2(7), a005546.

Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27.

Caparas, M., Zobel, Z., Castanho, A. D. A., & Schwalm, C. R. (2021). Increasing risks of crop failure and water scarcity in global breadbaskets by 2030. Environmental Research Letters, 16(10), 104013.

Cato, S. C., & Macedo, W. R. (2013). Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-Tom Horticultura Brasileira, 31, 549–553.

Chalise, S., Naranpanawa, A., Bandara, J. S., & Sarker, T. (2017). A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal. Economic Modelling, 62, 43–50.

Chen, L., Sun, B., Xu, L., & Liu, W. (2016). Wound signaling: The missing link in plant regeneration. Plant Signaling and Behavior, 11(10), e1238548.

Clément, J., Delisle-Houde, M., Nguyen, T. T. A., Dorais, M., & Tweddell, R. J. (2023). Effect of biostimulants on leafy vegetables (Baby Leaf lettuce and Batavia lettuce) exposed to abiotic or biotic stress under two different growing systems. Agronomy, 13(3), 879.

Cui, Q., Xie, L., Dong, C., Gao, L., & Shang, Q. (2021). Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Science, 304, 110803.

Cunha, A. F. A., Rodrigues, P. H. D., Anghinoni, A. C., de Paiva, V. J., Pinheiro, D. G. da S., & Campos, M. L. (2023). Mechanical wounding impacts the growth versus defense balance in tomato (Solanum lycopersicum). Plant Science, 329, 111601.

Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Global synthesis of drought effects on maize and wheat production. PLoS ONE, 11(5), e0156362.

Delgado, C., Mora‐poblete, F., Ahmar, S., Chen, J. T., & Figueroa, C. R. (2021). Jasmonates and plant salt stress: Molecular players, physiological effects, and improving tolerance by using genome‐associated tools. International Journal of Molecular Sciences, 22(6), 3082.

Dewi, W. S., Amalina, D. D., & Romadhon, M. R. (2023). Microbial biofilm for soil health, plant growth, and productivity under multi stress. A Review. IOP Conference Series: Earth and Environmental Science, 1162(1), 012008.

Dokwal, D., Romsdahl, T. B., Kunz, D. A., Alonso, A. P., & Dickstein, R. (2021). Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules. Plant Physiology, 185(4), 1847–1859.

Dong, X., Tang, H., Zhang, Q., Zhang, C., & Wang, Z. (2022). Transcriptomic analyses provide new insights into jujube fruit quality affected by water deficit stress. Scientia Horticulturae, 291, 110558.

du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.

FAO. (2016). The state of food and agriculture. Climate change, agriculture and food security. Rome-Italy: Food and Agriculture Organization of the United States. Retrieved from

Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. H. M. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81–102.

Fiorucci, A. S., Michaud, O., Schmid-Siegert, E., Trevisan, M., Petrolati, L. A., Ince, Y. Ç., & Fankhauser, C. (2022). Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes. PLoS Genetics, 18(5), e1010213.

Franzoni, G. (2020). Mechanisms of action of biostimulants in crops (Doctoral dissertation). Institutional Research Information System - AIR Archivio Istituzionale della Ricerca. Retrieved from

Galieni, A., Di Mattia, C., De Gregorio, M., Speca, S., Mastrocola, D., Pisante, M., & Stagnari, F. (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae, 187, 93–101.

Gao, Y. Q., & Farmer, E. E. (2023). Osmoelectric siphon models for signal and water dispersal in wounded plants. Journal of Experimental Botany, 74(4), 1207–1220.

Gerhards, R., Ouidoh, F. N., Adjogboto, A., Avohou, V. A. P., Dossounon, B. L. S., Adisso, A. K. D., Heyn, A., Messelhäuser, M., Santel, H. J., & Oebel, H. (2021). Crop response to leaf and seed applications of the biostimulant ComCat® under stress conditions. Agronomy, 11(6), 1161.

González-Morales, S., Solís-Gaona, S., Valdés-Caballero, M. V., Juárez-Maldonado, A., Loredo-Treviño, A., & Benavides-Mendoza, A. (2021). Transcriptomics of biostimulation of plants under abiotic stress. Frontiers in Genetics, 12, 583888.

Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy, 9(6), 298.

Guan, W., Edwards, M. G., Gatehouse, J. A., & Gatehouse, A. M. R. (2022). Responses of wheat (Triticum aestivum) to grain aphid (Sitobion avenae) infestation and mechanical wounding using a cDNA subtractitve library approach. Agricultural Sciences, 13(06), 715–740.

Guo, M., Wang, X. S., Guo, H. D., Bai, S. Y., Khan, A., Wang, X. M., Gao, Y. M., & Li, J. S. (2022). Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Frontiers in Plant Science, 13, 949541.

Haase, D. L., Bouzza, K., Emerton, L., Friday, J. B., Lieberg, B., Aldrete, A., & Davis, A. S. (2021). The high cost of the low-cost polybag system: A review of nursery seedling production systems. Land, 10(8), 826.

Habib, S., Lwin, Y. Y., & Li, N. (2021). Article down-regulation of slgras10 in tomato confers abiotic stress tolerance. Genes, 12(5), 623.

Hai, N. N., Chuong, N. N., Tu, N. H. C., Kisiala, A., Hoang, X. L. T., & Thao, N. P. (2020). Role and regulation of cytokinins in plant response to drought stress. Plants, 9(4), 422.

Hajihashemi, S., Mbarki, S., Skalicky, M., Noedoost, F., Raeisi, M., & Brestic, M. (2020). Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum L.). Water, 12(2), 607.

Hanus-Fajerska, E., Kępka, K., Kruszyna, C., & Kamińska, I. (2023). Plant-based solutions for non-productive sites useful in the management of dry land. Plants, 12(3), 537.

Hernández-García, J., Briones-Moreno, A., & Blázquez, M. A. (2021). Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell and Developmental Biology, 109, 46–54.

Hoque, M. M., & Kobata, T. (2000). Effect of soil compaction on the grain yield of rice (Oryza sativa L.) under water-deficit stress during the reproductive stage. Plant Production Science, 3(3), 316–322.

Hossain, A., Pamanick, B., Venugopalan, V. K., Ibrahimova, U., Rahman, M. A., Siyal, A. L., Maitra, S., Chatterjee, S., & Aftab, T. (2021). Emerging roles of plant growth regulators for plants adaptation to abiotic stress-induced oxidative stress. Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance, pp. 1–72.

Huang, G., Kilic, A., Karady, M., Zhang, J., Mehra, P., Song, X., Sturrock, C. J., Zhu, W., Qin, H., Hartman, S., Schneider, H. M., Bhosale, R., Dodd, I. C., Sharp, R. E., Huang, R., Mooney, S. J., Liang, W., Bennett, M. J., Zhang, D., & Pandey, B. K. (2022). Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin-mediated mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 119(30), e2201072119.

Ibrahim, A., Harrison, M., Meinke, H., Fan, Y., Johnson, P., & Zhou, M. (2018). A regulator of early flowering in barley (Hordeum vulgare L.). PLoS ONE, 13(7), e0200722.

Inoue, T., Sunaga, M., Ito, M., Yuchen, Q., Matsushima, Y., Sakoda, K., & Yamori, W. (2021). Minimizing VPD fluctuations maintains higher stomatal conductance and photosynthesis, resulting in improvement of plant growth in lettuce. Frontiers in Plant Science, 12, 646144.

Iqbal, M. S., Singh, A. K., & Ansari, M. I. (2020). Effect of drought stress on crop production. New Frontiers in Stress Management for Durable Agriculture, pp. 35–47. Springer, Singapore.

Isa, M. M., Kasim, K. F., Muttalib, M. F. A., & Jaafar, M. N. (2021). Physical and chemical properties of different media mixture as D growing medium for containerized plant. AIP Conference Proceedings, 2339, 020122.

Jackson, K., Meetei, T. T., Jackson, K., & Meetei, T. T. (2018). Influence of soil pH on nutrient availability: A Review. International Journal of Emerging Technologies and Innovative Research, 5(12), 707–713. Retrieved from

Jaiswal, S. K., Naamala, J., & Dakora, F. D. (2018). Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biology and Fertility of Soils, 54(3), 309–318.

Jan, R., Khan, M. A., Asaf, S., Lubna, Waqas, M., Park, J. R., Asif, S., Kim, N., Lee, I. J., & Kim, K. M. (2022). Drought and UV radiation stress tolerance in rice is improved by overaccumulation of non-enzymatic antioxidant flavonoids. Antioxidants, 11(5), 917.

Jiménez-Arias, D., Morales-Sierra, S., Borges, A. A., Herrera, A. J., & Luis, J. C. (2022). New biostimulants screening method for crop seedlings under water deficit stress. Agronomy, 12(3), 728.

Jogawat, A., Yadav, B., Chhaya, Lakra, N., Singh, A. K., & Narayan, O. P. (2021). Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiologia Plantarum, 172(2), 1106–1132.

Kang, J., Chu, Y., Ma, G., Zhang, Y., Zhang, X., Wang, M., Lu, H., Wang, L., Kang, G., Ma, D., Xie, Y., & Wang, C. (2023). Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. Crop Journal, 11(2), 638–650.

Kapoore, R. V., Wood, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49, 107754.

Khattak, A., Ullah, F., Shinwari, Z. K., & Mehmood, S. (2021). The effect of titanium dioxide nanoparticles and salicylic acid on growth and biodiesel production potential of sunflower (Helianthus annuus L.) under water stress. Pakistan Journal of Botany, 53(6), 1987–1995.

Khetsha, Z. P. (2020). Using agricultural plant growth regulators as a mitigating strategy for hail-damaged rose geranium (Pelargonium graveolens L’Hér.) (Doctoral dissertation). Central University of Technology. Retrieved from

Khetsha, Z. P., Mahmood Sedibe, M., Johannes Pretorius, R., Caiphus Rathebe, P., & Moloantoa, K. (2022). Using biostimulants containing phytohormones to recover hail-damaged essential oil plants. IntechOpen.

Khetsha, Z. P., Sedibe, M. M., & Pretorius, R. J. (2020). Effects of abscisic acid and methyl jasmonate on the recovery of hail damaged rose geranium (Pelargonium graveolens) plants. Acta Horticulturae, 1287, 31–40.

Khetsha, Z. P., Sedibe, M. M., Pretorius, R. J. & Van Der Watt, E. (2023). Biostimulants improve the leaf micro-morphology and essential oil biosynthesis of simulated hail-damaged Pelargonium graveolens (L’Hér.). Acta Horticulturae, 1372, 283–294.

Kiremit, M. S., Osman, H. M., & Arslan, H. (2022). Response of yield, growth traits, and leaf nutrients of garden cress to deficit saline irrigation waters. Journal of Plant Nutrition, 46(6), 1050–1065.

Koehler, T., Moser, D. S., Botezatu, Á., Murugesan, T., Kaliamoorthy, S., Zarebanadkouki, M., Bienert, M. D., Bienert, G. P., Carminati, A., Kholová, J., & Ahmed, M. (2022). Going underground: Soil hydraulic properties impacting maize responsiveness to water deficit. Plant and Soil, 478(1–2), 43–58.

Kudoyarova, G., Veselov, D., Yemelyanov, V., & Shishova, M. (2022). The role of aquaporins in plant growth under conditions of oxygen deficiency. International Journal of Molecular Sciences, 23(17), 10159.

Kumar, S., Bhushan, B., Wakchaure, G. C., Meena, K. K., Kumar, M., Meena, N. L., & Rane, J. (2020). Plant phenolics under water-deficit conditions: Biosynthesis, accumulation, and physiological roles in water stress alleviation. Plant Phenolics in Sustainable Agriculture, 1, 451–465.

Kwak, S. S. (2019). Biotechnology of the sweetpotato: Ensuring global food and nutrition security in the face of climate change. Plant Cell Reports, 38(11), 1361–1363.

Landi, S., Hausman, J. F., Guerriero, G., & Esposito, S. (2017). Poaceae vs. abiotic stress: Focus on drought and salt stress, recent insights and perspectives. Frontiers in Plant Science, 8, 1214.

Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S., Davis, K. F., & Konar, M. (2022). Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth and Environment, 3(12), 872–889.

Li, W., Gupta, A., Tian, H., Nguyen, K. H., Tran, C. D., Watanabe, Y., Tian, C., Li, K., Yang, Y., Guo, J., Luo, Y., Miao, Y., & Phan Tran, L. S. (2020). Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. Plant Signaling and Behavior, 15(9), 1789321.

Li, X. F., Zuo, F. H., Ling, G. Z., Li, Y. Y., Yu, Y. X., Yang, P. Q., & Tang, X. L. (2009). Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes. Plant and Soil, 325(1), 219–229.

Liebenberg, A., van der Nest, J. R., Hardie, A. G., Labuschagne, J., & Swanepoel, P. A. (2020). Extent of soil acidity in no-tillage systems in the western Cape province of South Africa. Land, 9(10), 361.

Lim, M. M. L., Søgaard Jørgensen, P., & Wyborn, C. A. (2018). Reframing the sustainable development goals to achieve sustainable development in the anthropocene—a systems approach. Ecology and Society, 23(3), 22.

Liu, J., Shu, D., Tan, Z., Ma, M., Guo, N., Gao, S., Duan, G., Kuai, B., Hu, Y., Li, S., & Cui, D. (2022). The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. New Phytologist, 236(3), 929–942.

Loconsole, D., Cristiano, G., & De Lucia, B. (2023). Biostimulant application, under reduced nutrient supply, enhances quality and sustainability of ornamental containerized transplants. Agronomy, 13(3), 765.

Lu, J., Shao, G., Gao, Y., Zhang, K., Wei, Q., & Cheng, J. (2021). Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis. Agricultural Water Management, 243, 106427.

Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911.

Maboko, M. M., & Plooy, C. P. du. (2008). Effect of pruning on yield and quality of hydroponically grown cherry tomato (Lycopersicon esculentum). South African Journal of Plant and Soil, 25(3), 178–181.

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: Plant growth in response to deficiency and excess. Plant Nutrients and Abiotic Stress Tolerance, pp. 171–190. Springer, Singapor.

Mattner, S. W., Villalta, O. N., McFarlane, D. J., Islam, M. T., Arioli, T., & Cahill, D. M. (2023). The biostimulant effect of an extract from Durvillaea potatorum and Ascophyllum nodosum is associated with the priming of reactive oxygen species in strawberry in south-eastern Australia. Journal of Applied Phycology, 35(4), 1789–1800.

McKay, D. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., & Lenton, T. M. (2022). Updated assessment suggests >1.5°C global warming could trigger multiple climate tipping points. Earth and Space Science Open Archive, pp. 1–80. Retrieved from

Meents, A. K., Chen, S. P., Reichelt, M., Lu, H. H., Bartram, S., Yeh, K. W., & Mithöfer, A. (2019). Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Scientific Reports, 9(1), 17431.

Melrose, J., & Normandeau, S. (2021). The prairie gardener's go-to for small spaces. Touchwood Editions. Retrieved from's%20go-to%20for%20small%20spaces&f=false

Meng, X., Chen, W. W., Wang, Y. Y., Huang, Z. R., Ye, X., Chen, L. S., & Yang, L. T. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16, e0246944.

Million, J. B., & Yeager, T. H. (2022). Fabric containers increased irrigation demand but decreased leachate loss of nitrogen and phosphorus compared with conventional plastic containers during production of dwarf Burford Holly. HortScience, 57(7), 743–749.

Minhas, P. S., Rane, J., & Pasala, R. K. (2017). Abiotic stresses in agriculture: An overview. Abiotic Stress Management for Resilient Agriculture, pp. 3–8. Springer, Singapore.

Mo, Z., Feng, G., Su, W., Liu, Z., & Peng, F. (2018). Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis). Genes, 9(2), 71.

Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Plant responses to herbivory, wounding, and infection. International Journal of Molecular Sciences, 23(13), 7031.

Mundaya Narayanan, J., Viswanathan, V., Tirumalai Ramanujam, T., & Nagendra Rao, K. (2023). Improving tomato productivity for changing climatic and environmental stress conditions. Tomato Cultivation and Consumption - Innovation, Sustainability and Health. IntechOpen.

Muneer, S., & Jeong, B. R. (2015). Proteomic analysis provides new insights in phosphorus homeostasis subjected to pi (inorganic phosphate) starvation in tomato plants (Solanum lycopersicum L.). PLoS ONE, 10(7), e0134103.

Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K., & Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites, 10(12), 505.

Niu, C., Wang, G., Sui, J., Liu, G., Ma, F., & Bao, Z. (2022). Biostimulants alleviate temperature stress in tomato seedlings. Scientia Horticulturae, 293, 110712.

Numan, M., Serba, D. D., & Ligaba-Osena, A. (2021). Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes, 12(5), 739.

Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 00537.

Parkash, V., & Singh, S. (2020). A review on potential plant-basedwater stress indicators for vegetable crops. Sustainability, 12(10), 3945.

Peterson, M. T. (2020). Screening of ten maize genotypes for tolerance to acid soils using various methods (Doctoral dissertation). University of South Africa. Retrieved from

Petropoulos, S. A. (2020). Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy, 10(10), 1569.

Pietrak, A., Salachna, P., & Łopusiewicz, Ł. (2023). Changes in growth, ionic status, metabolites content and antioxidant activity of two ferns exposed to shade, full sunlight, and salinity. International Journal of Molecular Sciences, 24(1), 296.

Rai, N., Rai, S. P., & Sarma, B. K. (2021). Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Frontiers in Sustainable Food Systems, 5, 754853.

Ramzan, F., & Younis, A. (2022). Use of biostimulants in tolerance of drought stress in agricultural crops. Emerging Plant Growth Regulators in Agriculture, pp. 429–446.

Rana, V. S., Sharma, S., Rana, N., & Sharma, U. (2022). Sustainable production through biostimulants under fruit orchards. CABI Agriculture and Bioscience, 3(1), 38.

Raza, M. A., Gul, H., Wang, J., Yasin, H. S., Qin, R., Bin Khalid, M. H., Naeem, M., Feng, L. Y., Iqbal, N., Gitari, H., Ahmad, S., Battaglia, M., Ansar, M., Yang, F., & Yang, W. (2021). Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. Journal of Cleaner Production, 308, 127282.

Repke, R. A., Silva, D. M. R., dos Santos, J. C. C., & de Almeida Silva, M. (2022). Alleviation of drought stress in soybean by applying a biostimulant based on amino acids and macro- and micronutrients. Agronomy, 12(10), 2244.

Rezaei-Chiyaneh, E., Mahdavikia, H., Alipour, H., Dolatabadian, A., Battaglia, M. L., Maitra, S., & Harrison, M. T. (2023). Biostimulants alleviate water deficit stress and enhance essential oil productivity: A case study with savory. Scientific Reports, 13(1), 720.

Riaz, M., Arif, M. S., Ashraf, M. A., Mahmood, R., Yasmeen, T., Shakoor, M. B., Shahzad, S. M., Ali, M., Saleem, I., Arif, M., & Fahad, S. (2018). A comprehensive review on rice responses and tolerance to salt stress. Advances in Rice Research for Abiotic Stress Tolerance, 133–158.

Rouphael, Y., Raimondi, G., Lucini, L., Carillo, P., Kyriacou, M. C., Colla, G., Cirillo, V., Pannico, A., El-Nakhel, C., & De Pascale, S. (2018). Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Frontiers in Plant Science, 9, 00249.

Sabatino, L., Consentino, B. B., Rouphael, Y., Baldassano, S., De Pasquale, C., & Ntatsi, G. (2023). Ecklonia maxima-derivate seaweed extract supply as mitigation strategy to alleviate drought stress in chicory plants. Scientia Horticulturae, 312, 111856.

Sabina, S., & Jithesh, M. N. (2021). Mechanical wounding of leaf midrib and lamina elicits differential biochemical response and mitigates salinity induced damage in tomato. Journal of Applied Horticulture, 23(1), 3–10.

Sack, L., & Buckley, T. N. (2020). Trait multi-functionality in plant stress response. Integrative and Comparative Biology, 60(1), 98–112.

Savatin, D. V., Gramegna, G., Modesti, V., & Cervone, F. (2014). Wounding in the plant tissue: The defense of a dangerous passage. Frontiers in Plant Science, 5, 00470.

Schuch, U. K., & Quist, T. M. (2023). Arizona landscape palms and their management. The University of Arizona Cooperative Extension Press, pp. 1–14. Retrieved from

Sedibe, M. M., Khetsha, Z. P., & Malebo, N. (2013). Salinity effects on external and internal morphology of rose geranium (Pelargonium graveolens L.) leaf. Life Science Journal, 10(11), 99–103. Retrieved from

Sehgal, A., Reddy, K. R., Walne, C. H., Barickman, T. C., Brazel, S., Chastain, D., & Gao, W. (2022). Individual and interactive effects of multiple abiotic stress treatments on early-season growth and development of two Brassica species. Agriculture, 12(4), 453.

Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., & Hasanuzzaman, M. (2022). Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(22), 3158.

Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture, 13(2), 462.

Sondhi, S. (2023). Applications of bioplastic in composting bags and planting pots. Handbook of Bioplastics and Biocomposites Engineering Applications, 605–617.

Stagnari, F., Galieni, A., Speca, S., & Pisante, M. (2014). Water stress effects on growth, yield and quality traits of red beet. Scientia Horticulturae, 165, 13–22.

Sultan, K., Perveen, S., Parveen, A., Atif, M., & Zafar, S. (2023). Benzyl Amino Purine (BAP), moringa leaf extract and ascorbic acid induced drought stress tolerance in pea (Pisum sativum L.). Gesunde Pflanzen, 75(6), 2423–2436.

Tadele, K. T., & Zerssa, G. W. (2023). Biostimulants and phytohormones improve productivity and quality of medicinal plants under abiotic stress. Medicinal Plants: Their Response to Abiotic Stress, pp. 335–362. Springer, Singapore.

Tarigan, M., Wingfield, M. J., van Wyk, M., Tjahjono, B., & Roux, J. (2011). Pruning quality affects infection of Acacia mangium and A. crassicarpa by Ceratocystis acaciivora and Lasiodiplodia theobromae. Southern Forests, 73(3–4), 187–191.

Turan, M., Yildirim, E., Ekinci, M., & Argin, S. (2021). Effect of biostimulants on yield and quality of cherry tomatoes grown in fertile and stressed soils. HortScience, 56(4), 414–423.

Turner, N. C. (2019). Imposing and maintaining soil water deficits in drought studies in pots. Plant and Soil, 439(1–2), 45–55.

Vega-Muñoz, I., Duran-Flores, D., Fernández-Fernández, Á. D., Heyman, J., Ritter, A., & Stael, S. (2020). Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Frontiers in Plant Science, 11, 610445.

Venugopal, D., Vishwakarma, S., Kaur, I., & Samavedi, S. (2023). Electrospun fiber-based strategies for controlling early innate immune cell responses: Towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomaterialia, 11, 228–247.

Verma, P. K., Verma, S., & Pandey, N. (2022). Root system architecture in rice: impacts of genes, phytohormones and root microbiota. 3 Biotech, 12(9), 239.

Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop Journal, 4(3), 162–176.

Warren, R., Price, J., Graham, E., Forstenhaeusler, N., & VanDerWal, J. (2018). The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science, 360(6390), 791–795.

Wei, X., Liao, R., Zhang, X., Zhao, Y., Xie, Z., Yang, S., Su, H., Wang, Z., Zhang, L., Tian, B., Wei, F., & Yuan, Y. (2023). Integrative transcriptome, miRNAs, degradome, and phytohormone analysis of Brassica rapa L. in response to Plasmodiophora brassicae. International Journal of Molecular Sciences, 24(3), 2414.

Weil, R. R., & Brady, N. C. (2016). The nature and properties of soils, ed. Columbus, Ohio: Pearson, 910. Retrieved from,5&hl=id

Wielkopolan, B., Frąckowiak, P., Wieczorek, P., & Obrępalska-Stęplowska, A. (2022). The impact of Oulema melanopus—Associated bacteria on the wheat defense response to the feeding of their insect hosts. Cells, 11(15), 2342.

Wissuwa, M. (2003). How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology, 133(4), 1947–1958.

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049.

Yakti, W., Müller, M., Klost, M., Mewis, I., Dannehl, D., & Ulrichs, C. (2023). Physical properties of substrates as a driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae growth. Insects, 14(3), 266.

Yoneyama, K., Xie, X., Kim, H. Il, Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., & Yoneyama, K. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235(6), 1197–1207.

Yuan, L. B., Dai, Y. S., Xie, L. J., Yu, L. J., Zhou, Y., Lai, Y. X., Yang, Y. C., Xu, L., Chen, Q. F., & Xiao, S. (2017). Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiology, 173(3), 1864–1880.

Zhang, F., He, J. D., Ni, Q. D., Wu, Q. S., & Zou, Y. N. (2018). Enhancement of drought tolerance in trifoliate orange by mycorrhiza: Changes in root sucrose and proline metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 270–276.

Zhang, L., Li, D., Yao, Y., & Zhang, S. (2020). H2O2, Ca2+, and K+ in subsidiary cells of maize leaves are involved in regulatory signaling of stomatal movement. Plant Physiology and Biochemistry, 152, 243–251.

Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 11(17), 2761.

Zharare, G. E., & Vilane, N. M. (2021). Soil fertility management for groundnut in the Lowveld of Mpumalanga and north coastal plain of KwaZulu-Natal provinces of South Africa. South African Journal of Agricultural Extension, 49(2), 59–69.

Zulfiqar, F., Casadesús, A., Brockman, H., & Munné-Bosch, S. (2020). An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Science, 295, 110194.


  • There are currently no refbacks.