Effect of Different Types of Biochar Applications and Phosphate Fertilizer on the Quality and Yield of Edamame Soybeans on Andisols

Ramdhana Karimah, Benito Heru Purwanto, Eko Hanudin, Sri Nuryani Hidayah Utami, Margi Asih Maimunah


Edamame soybean (Glycine max (L.) Merr.) cultivation in phosphorus-limited Andisols presents a formidable challenge due to restricted phosphorus availability despite high phosphorus retention. Unlocking the full potential of this crop demands innovative solutions. This study delves into the transformative effects of biochar and phosphorus fertilizer, individually and synergistically, on edamame soybean growth in Andisols. Employing a randomized complete block design, researchers investigate three types of biochar (B0: control, B1: biochar pellets, B2: biochar powder) and four phosphorus fertilizer rates (P0: control, P1: 27 kg ha-1 P2O5, P2: 54 kg ha-1 P2O5, P3: 81 kg ha-1 P2O5). The bamboo-derived biochar was produced using the Kon-tiki method at ±500 °C. The study reveals no significant interaction between biochar and phosphorus fertilizer. Individually, treatments with B1, B2, and phosphorus fertilizers significantly enhance ammonium, nitrate, and phosphorus availability compared to B0 and P0. Biochar-induced modifications improve phosphorus and nitrogen absorption by roots, resulting in increased shoot dry weight and the root/shoot ratio. However, the number of leaves is solely influenced by phosphorus fertilizer treatment. Additionally, both biochar and phosphorus fertilizers contribute to nitrate reductase activity, root volume, an increased number of pods per plant and higher protein content in edamame soybeans. B2 outperforms B1 and high P3 intensifies this effect, improving nutrient uptake and yield. In summary, biochar and phosphorus fertilizers demonstrate significant potential to revolutionize edamame soybean cultivation in phosphorus-limited Andisols, optimizing pod number per plant and enhancing quality with elevated protein content.


Andisols; biochar; edamame; nitrate reductase activity; phosphorus fertilizer

Full Text:



Abbruzzini, T. F., Davies, C. A., Toledo, F. H., & Cerri, C. E. P. (2019). Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. Journal of Environmental Management, 252, 109638. https://doi.org/10.1016/j.jenvman.2019.109638

Adeli, A., Karamat, R. S., Dennis, E. R., & Haile, T. (2005). Effects of broiler litter on soybean production and soil nitrogen and phosphorus concentrations. Agronomy Journal, 97(1), 314–321. https://doi.org/10.2134/agronj2005.0314

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

Ao, X., Guo, X. H., Zhu, Q., Zhang, H. J., Wang, H. Y., Ma, Z. H., Han, X. R., Zhao, M. H., & Xie, F. T. (2014). Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. Journal of Integrative Agriculture, 13(2), 326–334. https://doi.org/10.1016/S2095-3119(13)60390-1

Bagale, S. (2021). Nutrient management for soybean crops. International Journal of Agronomy, 2021, 3304634. https://doi.org/10.1155/2021/3304634

Ben-Dor, E., & Banin, A. (1989). Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method. Communications in Soil Science and Plant Analysis, 20(15–16), 1675–1 695. https://doi.org/10.1080/00103628909368175

Bird, M., Keitel, C., & Meredith, W. (2017). Analysis of biochars for C, H, N, O and S by elemental analyser. B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A guide to analysis method (pp. 39–50). Boca Raton: CRC Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=ieRrDgAAQBAJ&oi=fnd&pg=PA39&dq=Analysis+of+biochars+for+C,+H,+N,+O+and+S+by+elemental+analyser&ots=zDwP0iZIB9&sig=O1Ongd_KRPBl89Hzi3xhl-YLqMA&redir_esc=y#v=onepage&q=Analysis%20of%20biochars%20for%20C%2C%20H%2C%20N%2C%20O%20and%20S%20by%20elemental%20analyser&f=false

Böhm, W. (1979). Root parameters and their measurement. W. Böhm (Ed). Methods of Studying Root Systems (pp. 125–138). Springer. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-67282-8_12

Butnan, S., Deenik, J. L., & Toomsan, B. (2018). Biochar properties affecting carbon stability in soils contrasting in texture and mineralogy. Agriculture and Natural Resources, 51(6), 492–498. https://doi.org/10.1016/j.anres.2018.03.002

Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis: Second edition. Boca Raton: CRC Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=ZTJsbXsikagC&oi=fnd&pg=PP1&dq=Soil+sampling+and+methods+of+analysis:+Second+edition&ots=VhzAAL3RP2&sig=8ftGq8wQJYUh3u9tIhVDQQxufPY&redir_esc=y#v=onepage&q=Soil%20sampling%20and%20methods%20of%20analysis%3A%20Second%20edition&f=false

Cassman, K. G., Whitney, A. S., & Fox, R. L. (1981). Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition 1. Agronomy Journal, 73(1), 17–22. https://doi.org/10.2134/agronj1981.00021962007300010005x

Cen, Z., Wei, L., Muthukumarappan, K., Sobhan, A., & McDaniel, R. (2021). Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid. Journal of Soil Science and Plant Nutrition, 21(3), 2007–2019. https://doi.org/10.1007/s42729-021-00497-x

Chaudhary, M. I., Adu-Gyamfi, J. J., Saneoka, H., Nguyen, N. T., Suwa, R., Kanai, S., El-Shemy, H. A., Lightfoot, D. A., & Fujita, K. (2008). The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiologiae Plantarum, 30(4), 537–544. https://doi.org/10.1007/s11738-008-0152-8

Chen, H., & Huang, L. (2020). Effect of nitrogen fertilizer application rate on nitrate reductase activity in Maize. Applied Ecology and Environmental Research, 18(2), 2879–2894. https://doi.org/10.15666/aeer/1802_28792894

Chen, Q., Qin, J., Sun, P., Cheng, Z., & Shen, G. (2018). Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system. Journal of Cleaner Production, 172, 2009–2018. https://doi.org/10.1016/j.jclepro.2017.11.224

Chia, C. H., Downie, A., & Munroe, P. (2015). Characteristics of biochar: Physical and structural properties. J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management Science, Technology, and Implementation (Second Edi, pp. 89–109). Earthscan Publication. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=gWDABgAAQBAJ&oi=fnd&pg=PA89&dq=Characteristics+of+biochar:+Physical+and+structural+properties&ots=t_SqCOJWl0&sig=ufR7wnDue4Tpjk60HXQmzlnvJWU&redir_esc=y#v=onepage&q=Characteristics%20of%20biochar%3A%20Physical%20and%20structural%20properties&f=false

Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870

Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36(2), 36. https://doi.org/10.1007/s13593-016-0372-z

Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., & Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, 213(1–4), 47–55. https://doi.org/10.1007/s11270-010-0366-4

El Sharkawi, H. M., Tojo, S., Chosa, T., Malhat, F. M., & Youssef, A. M. (2018). Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass and Bioenergy, 117, 154–160. https://doi.org/10.1016/j.biombioe.2018.07.007

Enders, A., Sohi, S., Lehmann, J., & Singh, B. (2017). Total elemental analysis of metals and nutrients in biochars. B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A Guide to Analytical Methods (pp. 95–108). CRC Press/Taylor and Francis Group. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=ieRrDgAAQBAJ&oi=fnd&pg=PA95&dq=Total+elemental+analysis+of+metals+and+nutrients+in+biochars&ots=zDwP0i_Gy2&sig=IlSP5yc9olmsxSqcr6RNr0iGtHc&redir_esc=y#v=onepage&q=Total%20elemental%20analysis%20of%20metals%20and%20nutrients%20in%20biochars&f=false

FAO. (2017). Soil organic carbon: The hidden potential. Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/3/i6937e/i6937e.pdf

FAO. (2019). World fertilizer trends and outlook to 2022. Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/3/ca6746en/ca6746en.pdf

Gao, T., Gao, M., Peng, J., & Li, N. (2018). Effects of different amount of biochar on nitrogen, phosphorus and potassium nutrients in soil. IOP Conference Series: Materials Science and Engineering, 394(2), 022043. https://doi.org/10.1088/1757-899X/394/2/022043

Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S. (2010). Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102(2), 623–633. https://doi.org/10.2134/agronj2009.0083

Graham, P. H., & Rosas, J. C. (1979). Phosphorus fertilization and symbiotic nitrogen fixation in common bean. Agronomy Journal, 71(6), 925–926. https://doi.org/10.2134/agronj1979.00021962007100060007x

Gwenzi, W., Nyambishi, T. J., Chaukura, N., & Mapope, N. (2018). Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. International Journal of Environmental Science and Technology, 15(2), 405–414. https://doi.org/10.1007/s13762-017-1399-7

Haider, G., Steffens, D., Müller, C., & Kammann, C. I. (2016). Standard extraction methods may underestimate nitrate stocks captured by field‐aged biochar. Journal of Environmental Quality, 45(4), 1196–1204. https://doi.org/10.2134/jeq2015.10.0529

Hammond, L. C., Black, C. A., & Norman, A. G. (1951). Nutrient uptake by soybeans on two Iowa soils. Research Bulletin (Iowa Agriculture and Home Economics Experiment Station), 30(384), 463–512. Retrieved from https://dr.lib.iastate.edu/handle/20.500.12876/62723

Hidayanto, F., Purwanto, B. H., & Hidayah Utami, S. N. (2020). Relationship between allophane with labile carbon and nitrogen fractions of soil in organic and conventional vegetable farming systems. Polish Journal of Soil Science, 53(2), 273–291. https://doi.org/10.17951/pjss/2020.53.2.273

Hua, L., Wu, W., Liu, Y., McBride, M. B., & Chen, Y. (2009). Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research, 16(1), 1–9. https://doi.org/10.1007/s11356-008-0041-0

Huang, C. Y., Roessner, U., Eickmeier, I., Genc, Y., Callahan, D. L., Shirley, N., Langridge, P., & Bacic, A. (2008). Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant and Cell Physiology, 49(5), 691–703. https://doi.org/10.1093/pcp/pcn044

Husk, B., & Major, J. (2010). Commercial scale agricultural biochar field trial in Québec, Canada over two years: Effects of biochar on soil fertility, biology and crop productivity and quality. Dynamotive Energy Systems, February, 1–38. Retrieved from https://scholar.google.co.id/scholar?cites=9802709578268843594&as_sdt=2005&sciodt=0,5&hl=id

Imran, Amanullah, & Altawaha, A. R. (2022). Carbon assimilation and dry matter partitioning in soybean ameliorates with the integration of nano-black carbon, along with beneficial microbes and phosphorus fertilization. Journal of Plant Nutrition, 45(12), 1799–1812. https://doi.org/10.1080/01904167.2022.2035753

Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, 144(1), 175–187. https://doi.org/10.1016/j.agee.2011.08.015

Jiang, W., He, P., Zhou, M., Lu, X., Chen, K., Liang, C., & Tian, J. (2021). Soybean responds to phosphate starvation through reversible protein phosphorylation. Plant Physiology and Biochemistry, 167, 222–234. https://doi.org/10.1016/j.plaphy.2021.08.007

Jien, S. H., & Wang, C. S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233. https://doi.org/10.1016/j.catena.2013.06.021

Jin, J., Liu, X., Wang, G., Chen, X., Yu, Z., & Herbert, S. J. (2013). Effect of phosphorus application on hierarchical lateral root morphology and phosphorus acquisition in soybean. Journal of Plant Nutrition, 36(10), 1578–1589. https://doi.org/10.1080/01904167.2013.799186

Johnson, D., Wang, S., & Suzuki, A. (1999). Edamame: A vegetable soybean for Colorado. J. Janick (Ed.), Perspectives on New Crops and New Uses (pp. 385–387). ASHS Press. Retrieved from https://scholar.google.co.id/scholar?cites=11369191806426587543&as_sdt=2005&sciodt=0,5&hl=id

Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45, 113–124. https://doi.org/10.1016/j.soilbio.2011.10.012

Joseph, S. D., & Munroe, P. R. (2017). Application of scanning electron microscopy to the analysis of biochar-related materials. B. Singh, M. Camps-Arbestain, & J. Lehmann (Eds.), Biochar: A guide to analysis method (pp. 272–282). CRC Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=ieRrDgAAQBAJ&oi=fnd&pg=PA272&dq=Application+of+scanning+electron+microscopy+to+the+analysis+of+biochar-related+materials&ots=zDwP0jTzB5&sig=qhsCnPLt7VOh5nJlytz02gup9Co&redir_esc=y#v=onepage&q=Application%20of%20scanning%20electron%20microscopy%20to%20the%20analysis%20of%20biochar-related%20materials&f=false

Joseph, S., Kammann, C. I., Shepherd, J. G., Conte, P., Schmidt, H. P., Hagemann, N., Rich, A. M., Marjo, C. E., Allen, J., Munroe, P., Mitchell, D. R. G., Donne, S., Spokas, K., & Graber, E. R. (2018). Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Science of the Total Environment, 618, 1210–1223. https://doi.org/10.1016/j.scitotenv.2017.09.200

Kakar, K. M., Tariq, M., Taj, F. H., & Nawab, K. (2002). Phosphorus use efficiency of soybean as affected by phosphorus application and inoculation. Journal of Agronomy, 1(1), 49–50. https://doi.org/10.3923/ja.2002.49.50

Kammann, C. I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H. W., Conte, P., & Stephen, J. (2015). Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports, 5, 11080. https://doi.org/10.1038/srep11080

Kim, J., Yoo, G., Kim, D., Ding, W., & Kang, H. (2017). Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Applied Soil Ecology, 117–118, 57–62. https://doi.org/10.1016/j.apsoil.2017.05.006

Kim, P., Hensley, D., & Labbé, N. (2014). Nutrient release from switchgrass-derived biochar pellets embedded with fertilizers. Geoderma, 232–234, 341–351. https://doi.org/10.1016/j.geoderma.2014.05.017

Koopmans, G. F., Chardon, W. J., de Willigen, P., & van Riemsdijk, W. H. (2004). Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability. Journal of Environmental Quality, 33(4), 1393–1402. https://doi.org/10.2134/jeq2004.1393

Kumar, S., Masto, R. E., Ram, L. C., Sarkar, P., George, J., & Selvi, V. A. (2013). Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecological Engineering, 55, 67–72. https://doi.org/10.1016/j.ecoleng.2013.02.011

Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3–4), 443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

Le Roux, M. R., Ward, C. L., Botha, F. C., & Valentine, A. J. (2006). Routes of pyruvate synthesis in phosphorus-deficient lupin roots and nodules. New Phytologist, 169(2), 399–408. https://doi.org/10.1111/j.1469-8137.2005.01594.x

Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 1–12). Routledge. Retrieved from https://www.taylorfrancis.com/chapters/edit/10.4324/9780203762264-1/biochar-environmental-management-introduction-johannes-lehmann-stephen-joseph

Leidi, E. O., & Rodriguez-Navarro, D. N. (2000). Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytologist, 147(2), 337–346. https://doi.org/10.1046/j.1469-8137.2000.00703.x

Li, H., Li, Y., Xu, Y., & Lu, X. (2019). Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere, 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471

Liu, M., Linna, C., Ma, S., Ma, Q., Guo, J., Wang, F., & Wang, L. (2022). Effects of biochar with inorganic and organic fertilizers on agronomic traits and nutrient absorption of soybean and fertility and microbes in purple soil. Frontiers in Plant Science, 13, 871021. https://doi.org/10.3389/fpls.2022.871021

Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., & Zhang, Z. (2019). A biochar-based route for environmentally friendly controlled release of nitrogen: Urea-loaded biochar and bentonite composite. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-46065-3

Liu, X., Zheng, M., Xiao, Y., Yang, Y., Yang, L., Liu, Y., Lei, B., Dong, H., Zhang, H., & Fu, H. (2013). Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes. ACS Applied Materials and Interfaces, 5(11), 4667–4677. https://doi.org/10.1021/am4012808

Madari, B. E., Silva, M. A. S., Carvalho, M. T. M., Maia, A. H. N., Petter, F. A., Santos, J. L. S., Tsai, S. M., Leal, W. G. O., & Zeviani, W. M. (2017). Properties of a sandy clay loam Haplic Ferralsol and soybean grain yield in a five-year field trial as affected by biochar amendment. Geoderma, 305, 100–112. https://doi.org/10.1016/j.geoderma.2017.05.029

Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028

Mills, H. A., & Jones, J. B. (1996). Plant Analysis Handbook II. A Practical Sampling, Preparation, Analysis, and Interpretation Guide.

Mohn, M. A., Thaqi, B., & Fischer-Schrader, K. (2019). Isoform-specific NO synthesis by arabidopsis thaliana nitrate reductase. Plants, 8(3), 67. https://doi.org/10.3390/plants8030067

Mozzoni, L., & Chen, P. (2019). Correlations of yield and quality traits between immature and mature seed stages of edamame soybean. Journal of Crop Improvement, 33(1), 67–82. https://doi.org/10.1080/15427528.2018.1542366

Neall, V. E. (2006). Volcanic soils. W. H. Verheye (Ed.), Land Use and Land Cover, Encyclopaedia of Life Support Systems (EOLSS) (pp. 1–24). EOLSS Publishers with UNESCO. Retrieved from https://scholar.google.co.id/scholar?cites=1821899905226295341&as_sdt=2005&sciodt=0,5&hl=id

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of Soil Analysis (pp. 961–1010). Soil Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.3.c34

Nelson, N. O., Agudelo, S. C., Yuan, W., & Gan, J. (2011). Nitrogen and phosphorus availability in biochar-amended soils. Soil Science, 176(5), 218–226. https://doi.org/10.1097/SS.0b013e3182171eac

Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105–112. https://doi.org/10.1097/SS.0b013e3181981d9a

Okunade, R. F., Adefare, M. E., Omenna, E. C., Adelakun, O. J., Olanipekun, O. T., Ezugwu, B. N., & Uthman, A. C. O. (2023). Effect of phosphorus concentration on nutrient composition of soybean Glycine max L. MOJ Food Processing & Technology, 11(1), 66–69. https://doi.org/10.15406/mojfpt.2023.11.00282

Olivera, M., Tejera, N., Iribarne, C., Ocaña, A., & Lluch, C. (2004). Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): Effect of phosphorus. Physiologia Plantarum, 121(3), 498–505. https://doi.org/10.1111/j.0031-9317.2004.00355.x

Pilbeam, D. J., Cakmak, I., Marschner, H., & Kirkby, E. A. (1993). Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant and Soil, 154(1), 111–117. https://doi.org/10.1007/BF00011079

Poudel, D. D., & West, L. T. (1999). Soil development and fertility characteristics of a volcanic slope in Mindanao, the Philippines. Soil Science Society of America Journal, 63(5), 1258–1273. https://doi.org/10.2136/sssaj1999.6351258x

Purwanto, B. H., Wulandari, P., Sulistyaningsih, E., Utami, S. N. H., & Handayani, S. (2021). Improved corn yields when humic acid extracted from composted manure is applied to acid soils with phosphorus fertilizer. Applied and Environmental Soil Science, 2021, 8838420. https://doi.org/10.1155/2021/8838420

R-Core-Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Ran, Y., Habib, R., Bar-Yosef, B., & Erez, A. (1994). Root volume effects on nitrogen uptake and partitioning in peach trees. Agronomy Journal, 86(3), 530–534. https://doi.org/10.2134/agronj1994.00021962008600030014x

Reijnders, L. (2014). Phosphorus resources, their depletion and conservation, a review. Resources, Conservation and Recycling, 93, 32–49. https://doi.org/10.1016/j.resconrec.2014.09.006

Rohmawati, I., & Ulfah, M. (2018). Productivity and growth performance of edamame (Glycin Max L Merril) due to the addition of sitokinin. Journal of Physics: Conference Series, 1025(1), 012048. https://doi.org/10.1088/1742-6596/1025/1/012048

Rufty, T. W., Israel, D. W., Volk, R. J., Qiu, J., & Sa, T. (1993). Phosphate regulation of nitrate assimilation in soybean. Journal of Experimental Botany, 44(5), 879–891. https://doi.org/10.1093/jxb/44.5.879

Rufty, T. W., MacKown, C. T., & Israel, D. W. (1990). Phosphorus stress effects on assimilation of nitrate. Plant Physiology, 94(1), 328–333. https://doi.org/10.1104/pp.94.1.328

Sa, T. M., & Israel, D. W. (1991). Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiology, 97(3), 928–935. https://doi.org/10.1104/pp.97.3.928

Scheerer, U., Trube, N., Netzer, F., Rennenberg, H., & Herschbach, C. (2019). ATP as phosphorus and nitrogen source for nutrient uptake by fagus sylvatica and populus x canescens roots. Frontiers in Plant Science, 10, 416196. https://doi.org/10.3389/fpls.2019.00378

Schmidt, H.-P., & Taylor, P. (2014). Kon-Tiki flame curtain pyrolysis for the democratization of biochar production. the Biochar-Journal, 14–24. Retrieved from https://www.biochar-journal.org/itjo/media/doc/1437139451142.pdf

Schulze, J., Temple, G., Temple, S. J., Beschow, H., & Vance, C. P. (2006). Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany, 98(4), 731–740. https://doi.org/10.1093/aob/mcl154

Sepúlveda‑Cadavid, C., Romero, J. H., Torres, M., Becerra‑Agudelo, E., & López, J. E. (2021). Evaluation of a biochar‑based slow‑release P Fertilizer to improve spinacia oleracea P use, yield, and nutritional quality. Journal of Soil Science and Plant Nutrition, 21, 2980–2992. https://doi.org/10.1007/s42729-021-00583-0

Shanmugasundaram, S., Cheng, S.-T., Huang, M.-T., & Yan, M.-R. (1991). Varietal improvement of vegetable soybean in Taiwan. Vegetable soybean: research needs for production and quality improvement, Proceedings of a workshop held at Kenting, Asian Vegetable Research and Development Center, Taiwan (pp. 30–42). Retrieved from https://pdf.usaid.gov/pdf_docs/PNABK804.pdf#page=32

Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525. https://doi.org/10.1071/SR10058

Spokas, K. A., Novak, J. M., Masiello, C. A., Johnson, M. G., Colosky, E. C., Ippolito, J. A., & Trigo, C. (2014). Physical disintegration of biochar: An overlooked process. Environmental Science and Technology Letters, 1(8), 326–332. https://doi.org/10.1021/ez500199t

Srivastava, H. S. (1980). Regulation of nitrate reductase activity in higher plants. Phytochemistry, 19(5), 725–733. https://doi.org/10.1016/0031-9422(80)85100-4

Sudhakar, P., Latha, P., & Reddy, P. V. (2016). Phenotyping crop plants for physiological and biochemical traits. Academic Press, Elsevier. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=_ttxCQAAQBAJ&oi=fnd&pg=PP1&dq=Phenotyping+Crop+Plants+for+Physiological+and+Biochemical+Traits&ots=oWXwqZMPFc&sig=8-Y7ZVkkQ4Nzt57yCEK0-G-mRz8&redir_esc=y#v=onepage&q=Phenotyping%20Crop%20Plants%20for%20Physiological%20and%20Biochemical%20Traits&f=false

Takahashi, S. (2007). Residual effect of phosphorus fertilizer in a low-humic andosol with low extractable phosphorus. Communications in Soil Science and Plant Analysis, 38(11–12), 1479–1485. https://doi.org/10.1080/00103620701378433

Tang, C., Hinsinger, P., Drevon, J. J., & Jaillard, B. (2001). Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Annals of Botany, 88(1), 131–138. https://doi.org/10.1006/anbo.2001.1440

Tanwar, S. P. S., & Shaktawat, M. S. (2003). Influence of phosphorus sources, levels and solubilizers on yield, quality and nutrient uptake of soybean (Glycine max)-wheat (Triticum aestivum) cropping system in southern Rajasthan. Indian Journal of Agricultural Sciences, 73(1), 3–7. Retrieved from https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/4605243

Thomazini, A., Spokas, K., Hall, K., Ippolito, J., Lentz, R., & Novak, J. (2015). GHG impacts of biochar: Predictability for the same biochar. Agriculture, Ecosystems and Environment, 207, 183–191. https://doi.org/10.1016/j.agee.2015.04.012

Trazzi, P. A., Leahy, J. J., Hayes, M. H. B., & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4(1), 37–46. https://doi.org/10.1016/j.jece.2015.11.005

Tryon, E. H. (1948). Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs, 18(1), 81–115. https://doi.org/10.2307/1948629

van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of the Total Environment, 542, 1078–1093. https://doi.org/10.1016/j.scitotenv.2015.08.048

van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1), 235–246. https://doi.org/10.1007/s11104-009-0050-x

Vans, H. J., & Nason, A. (1953). Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant physiology, 28(2), 233–254. https://doi.org/10.1104/pp.28.2.233

Wali, F., Naveed, M., Bashir, M. A., Asif, M., Ahmad, Z., Alkahtani, J., Alwahibi, M. S., & Elshikh, M. S. (2020). Formulation of biochar-based phosphorus fertilizer and its impact on both soil properties and chickpea growth performance. Sustainability, 12(22), 9528. https://doi.org/10.3390/su12229528

Win, M., Nakasathien, S., & Sarobol, E. (2010). Effects of phosphorus on seed oil and protein contents and phosphorus use efficiency in some soybean varieties. Agriculture and Natural Resources, 44(1), 1–9. Retrieved from https://li01.tci-thaijo.org/index.php/anres/article/view/244874

Xiang, Y., Deng, Q., Duan, H., & Guo, Y. (2017). Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy, 9(10), 1563–1572. https://doi.org/10.1111/gcbb.12449

Xing, X., Fan, F., & Jiang, W. (2018). Characteristics of biochar pellets from corn straw under different pyrolysis temperatures. Royal Society Open Science, 5(8), 172346. https://doi.org/10.1098/rsos.172346

Yang, S., Chen, X., Jiang, Z., Ding, J., Sun, X., & Xu, J. (2020). Effects of biochar application on soil organic carbon composition and enzyme activity in paddy soil under water-saving irrigation. International Journal of Environmental Research and Public Health, 17(1), 333. https://doi.org/10.3390/ijerph17010333

Yang, S., Wen, Q., & Chen, Z. (2021). Effect of KH2PO4-modified biochar on immobilization of Cr, Cu, Pb, Zn and as during anaerobic digestion of swine manure. Bioresource Technology, 339, 125570. https://doi.org/10.1016/j.biortech.2021.125570

Yao, L., Yu, X., Huang, L., Zhang, X., Wang, D., Zhao, X., Li, Y., He, Z., Kang, L., Li, X., Liu, D., Xiao, Q., & Guo, Y. (2019). Responses of Phaseolus calcaltus to lime and biochar application in an acid soil. PeerJ, 7, e6346. https://doi.org/10.7717/peerj.6346

Yu, D., Lord, N., Polk, J., Dhakal, K., Li, S., Yin, Y., Duncan, S. E., Wang, H., Zhang, B., & Huang, H. (2022). Physical and chemical properties of edamame during bean development and application of spectroscopy-based machine learning methods to predict optimal harvest time. Food Chemistry, 368, 130799. https://doi.org/10.1016/j.foodchem.2021.130799

Zhang, M., Riaz, M., Zhang, L., El-Desouki, Z., & Jiang, C. (2019). Biochar induces changes to basic soil properties and bacterial communities of different soils to varying degrees at 25 mm rainfall: More effective on acidic soils. Frontiers in Microbiology, 10, 461896. https://doi.org/10.3389/fmicb.2019.01321

Zhao, R., Coles, N., Kong, Z., & Wu, J. (2015). Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil and Tillage Research, 146, 133–138. https://doi.org/10.1016/j.still.2014.10.014

Zhao, S., Wang, B., Gao, Q., Gao, Y., & Liu, S. (2017). Adsorption of phosphorus by different biochars. Spectroscopy Letters, 50(2), 73–80. https://doi.org/10.1080/00387010.2017.1287091

Zhou, J., Qu, T., Li, Y., Van Zwieten, L., Wang, H., Chen, J., Song, X., Lin, Z., Zhang, X., Luo, Y., Cai, Y., & Zhong, Z. (2021). Biochar-based fertilizer decreased while chemical fertilizer increased soil N2O emissions in a subtropical Moso bamboo plantation. Catena, 202, 105257. https://doi.org/10.1016/j.catena.2021.105257

Zhu, Q., Kong, L., Shan, Y., Yao, X., Zhang, H., Xie, F., & Ao, X. (2019). Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. Journal of Integrative Agriculture, 18(10), 2242–2254. https://doi.org/10.1016/S2095-3119(19)62563-3

Zhu, Q., Kong, L., Xie, F., Zhang, H., Wang, H., & Ao, X. (2018). Effects of biochar on seedling root growth of soybeans. Chilean Journal of Agricultural Research, 78(4), 549–558. https://doi.org/10.4067/S0718-58392018000400549


  • There are currently no refbacks.