Utilization of Stenotrophomonas koreensis and Bacillus amyloliquefaciens for Improving Growth, Reducing Nitrogen Fertilization and Controlling Bipolaris sorokiniana in Wheat
Abstract
Keywords
Full Text:
PDFReferences
Adlakha, K. L., Wilcoxson, R. D., & Raychaudhuri, S. P. (1984). Resistance of wheat to leaf spot caused by Bipolaris sorokiniana. Plant Disease, 68(4), 320–321. Retrieved from https://www.apsnet.org/publications/plantdisease/backissues/Documents/1984Articles/PlantDisease68n04_320.PDF
Alexander, A., Singh, V. K., Mishra, A., & Jha, B. (2019). Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS ONE, 14(9), e0222405. https://doi.org/10.1371/journal.pone.0222405
Bergey, D. H., Holt, J. G., & Noel, R. K. (1994). Bergey's Manual of Systematic Bacteriology. Vol. 1, 9th Edn. Baltimore, MD: Williams & Wilkins. 1935–2045. Retrieved from https://scholar.google.com/scholar?cites=4396605405544326322&as_sdt=2005&sciodt=0,5&hl=en
Deng, Y., Han, X. F., Jiang, Z. M., Yu, L. Y., Li, Y., & Zhang, Y. Q. (2022). Characterization of three Stenotrophomonas strains isolated from different ecosystems and proposal of Stenotrophomonas mori sp. nov. and Stenotrophomonas lacuserhaii sp. nov. Frontiers in Microbiology, 13, 1056762. https://doi.org/10.3389/fmicb.2022.1056762
Erenstein, O., Chamberlin, J., & Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Global Food Security, 30, 100558. https://doi.org/10.1016/j.gfs.2021.100558
Farooq, S. (2009). Triticeae: The ultimate source of abiotic stress tolerance improvement in wheat. Salinity and Water Stress: Improving Crop Efficiency, 65–71. Springer Netherlands. https://doi.org/10.1007/978-1-4020-9065-3_7
Hernández, M. I., & Chailloux, M. (2004). Las micorrizas arbusculares y las bacterias rizosfericas como alternativa a la nutricion mineral del tomate. Cultivos Tropicales, 25(2), 5–12. Retrieved from https://www.redalyc.org/pdf/1932/193217832001.pdf
Hossain, M. M., Sultana, F., Kubota, M., & Hyakumachi, M. (2008). Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant and Soil, 304, 227–239. https://doi.org/10.1007/s11104-008-9542-3
Hossain, M. M., & Sultana, F. (2018). Methods for the characterization of plant-growth promoting rhizobacteria. Medina, C., López-Baena, F., editors. Host-Pathogen Interactions. Methods in Molecular Biology, Vol-1734. New York: Humana Press. https://doi.org/10.1007/978-1-4939-7604-1_24
Hossain, M. M., & Sultana, F. (2020). Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation. Das, S. K., Editor. Organic Agriculture. IntechOpen: London, UK. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=sGwtEAAAQBAJ&oi=fnd&pg=PA65&dq=Application+and+mechanisms+of+plant+growth+promoting+fungi+(PGPF)+for+phytostimulation&ots=vvUL2cei4I&sig=8MpZTwLkd6Rk4yAZa3eSwIr8M4U&redir_esc=y#v=onepage&q=Application%20and%20mechanisms%20of%20plant%20growth%20promoting%20fungi%20(PGPF)%20for%20phytostimulation&f=false
Hossain, M. M., Sultana, F., & Islam, S. (2017). Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts, 135–191. Singapore: Springer. https://doi.org/10.1007/978-981-10-6593-4_6
Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 165532. https://doi.org/10.3389/fmicb.2015.01360
Kilic-Ekici, O., & Yuen, G. Y. (2003). Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology, 93(9), 1103–1110. https://doi.org/10.1094/PHYTO.2003.93.9.1103
Kumar, R. S., Ayyadurai, N., Pandiaraja, P., Reddy, A., Venkateswarlu, Y., Prakash, O., & Sakthivel, N. (2005). Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. Journal of Applied Microbiology, 98(1), 145–154. https://doi.org/10.1111/j.1365-2672.2004.02435.x
Li, H. B., Singh, R. K., Singh, P., Song, Q. Q., Xing, Y. X., Yang, L. T., & Li, Y. R. (2017). Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontiers in Microbiology, 8, 256166. https://doi.org/10.3389/fmicb.2017.01268
Masum, M., Liu, L., Yang, M., Hossain, M., Siddiqa, M., Supty, M., Ogunyemi, S., Hossain, A., An, Q., & Li, B. (2018). Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae. Journal of Applied Microbiology, 125(6), 1852–1867. https://doi.org/10.1111/jam.14088
Paungfoo-Lonhienne, C., Redding, M., Pratt, C., & Wang, W. (2019). Plant growth promoting rhizobacteria increase the efficiency of fertilizers while reducing nitrogen loss. Journal of Environmental Management, 233, 337–341. https://doi.org/10.1016/j.jenvman.2018.12.052
Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43(2), 191–208. https://doi.org/10.1080/03235400802404734
Rahman, M. F., Akanda, A. M., Eivy, F. Z., & Hossain, M. M. (2018). Effect of Bacillus amyloliquefaciens on plant growth and suppression of Bipolaris leaf blight in wheat. Annals of Bangladesh Agriculture, 22(2), 9–19. Retrieved from https://bsmrau.edu.bd/aba/wp-content/uploads/sites/320/2019/07/ARTICLE-2-1.pdf
Sharma, S. K. M. P., Ramesh, A., & Joshi, O. P. (2012). Characterisation of Zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. Journal of Microbiology and Biotechnology, 22(3), 352–359. https://doi.org/10.4014/jmb.1106.05063
Sierra, G. (1957). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek, 23(1), 15–22. https://doi.org/10.1007/bf02545855
Singh, D. P. (2017). Management of Wheat and Barley Diseases. Florida, United State: CRC Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=xKU5DwAAQBAJ&oi=fnd&pg=PT9&dq=Management+of+Wheat+and+Barley+Diseases&ots=qaVcurrexO&sig=9czukSzuLBXU86Jzcd7oszI3XXY&redir_esc=y#v=onepage&q=Management%20of%20Wheat%20and%20Barley%20Diseases&f=false
Singh, J., Chhabra, B., Raza, A., Yang, S. H., & Sandhu, K. S. (2023). Important wheat diseases in the US and their management in the 21st century. Frontiers in Plant Science, 13, 1010191. https://doi.org/10.3389/fpls.2022.1010191
Su, J., Zhao, J., Zhao, S., Li, M., Pang, S., Kang, Z., Zhen, W., Chen, S., Chen, F., & Wang, X. (2021). Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Frontiers in Genetics, 12, 699342. https://doi.org/10.3389/fgene.2021.699342
Sultana, F., & Hossain, M. M. (2022). Assessing the potentials of bacterial antagonists for plant growth promotion, nutrient acquisition, and biological control of Southern blight disease in tomato. PLoS ONE, 17(6), e0267253. https://doi.org/10.1371/journal.pone.0267253
Ullah, H., Yasmin, H., Mumtaz, S., Jabeen, Z., Naz, R., Nosheen, A., & Hassan, M. N. (2020). Multitrait Pseudomonas spp. Isolated from monocropped wheat (Triticum aestivum) suppress Fusarium root and crown rot. Phytopathology, 110(3), 582–592. https://doi.org/10.1094/phyto-10-19-0383-r
Vance, E., Brookes, P., & Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., Hou, Z., Luan, P., & Li, R. (2021). Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens, 10(11), 1526. https://doi.org/10.3390/pathogens10111526
Yue, H. M., Wang, B., & Gong, W. F. (2018). The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbiology Letters, 365(22), fny242. https://doi.org/10.1093/femsle/fny242
Zhang, Z., & Yuen, G. Y. (2000). The role of chitinase production by Stenotrophomonas maltophilia Strain C3 in biological control of Bipolaris sorokiniana. Phytopathology, 90(4), 384–389. https://doi.org/10.1094/phyto.2000.90.4.384
Refbacks
- There are currently no refbacks.