Utilization of Stenotrophomonas koreensis and Bacillus amyloliquefaciens for Improving Growth, Reducing Nitrogen Fertilization and Controlling Bipolaris sorokiniana in Wheat

Md. Motaher Hossain

Abstract

Wheat (Triticum aestivum L.), a vital cereal, faces significant challenges from common root rot and spot blotch diseases caused by Bipolaris sorokiniana. This study aimed to explore the potential of plant growth promoting rhizobacteria (PGPR) to enhance wheat growth, reduce fertilizer input, and combat Bipolaris diseases. Two PGPR isolates, selected for their superior antagonistic properties, were identified as Stenotrophomonas koreensis RB11 and Bacillus amyloliquefaciens RB12. These PGPR strains displayed multiple plant growth promoting and biocontrol attributes, including phosphate solubilization, indole-3-acetic acid production, nitrogen fixation and antagonism against B. sorokiniana and other fungi. Wheat seed priming with the PGPR significantly improved germination, plant growth, nutrient content and biomass carbon accumulation in the rhizosphere soil. Importantly, the application of RB11 and RB12 allowed for a 25% and 50% reduction in nitrogen fertilizer usage, respectively, without compromising the yield. RB11 and RB12 also demonstrated potent inhibitory effects on B. sorokiniana conidial germination and significantly controlled common root rot and spot blotch in wheat, similar to those observed with the fungicide Protaf 250EC. Overall, this study underscores the multifaceted roles of S. koreensis RB11 and B. amyloliquefaciens RB12 in promoting wheat growth, reducing fertilizer inputs and effectively suppressing wheat pathogens. These findings contribute to the development of PGPR-based strategies for sustainable crop production and disease control.

Keywords

antagonist; common root rot; plant growth promoting rhizobacteria; root colonization; spot blotch

Full Text:

PDF

References

Adlakha, K. L., Wilcoxson, R. D., & Raychaudhuri, S. P. (1984). Resistance of wheat to leaf spot caused by Bipolaris sorokiniana. Plant Disease, 68(4), 320–321. Retrieved from https://www.apsnet.org/publications/plantdisease/backissues/Documents/1984Articles/PlantDisease68n04_320.PDF

Alexander, A., Singh, V. K., Mishra, A., & Jha, B. (2019). Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS ONE, 14(9), e0222405. https://doi.org/10.1371/journal.pone.0222405

Bergey, D. H., Holt, J. G., & Noel, R. K. (1994). Bergey's Manual of Systematic Bacteriology. Vol. 1, 9th Edn. Baltimore, MD: Williams & Wilkins. 1935–2045. Retrieved from https://scholar.google.com/scholar?cites=4396605405544326322&as_sdt=2005&sciodt=0,5&hl=en

Deng, Y., Han, X. F., Jiang, Z. M., Yu, L. Y., Li, Y., & Zhang, Y. Q. (2022). Characterization of three Stenotrophomonas strains isolated from different ecosystems and proposal of Stenotrophomonas mori sp. nov. and Stenotrophomonas lacuserhaii sp. nov. Frontiers in Microbiology, 13, 1056762. https://doi.org/10.3389/fmicb.2022.1056762

Erenstein, O., Chamberlin, J., & Sonder, K. (2021). Estimating the global number and distribution of maize and wheat farms. Global Food Security, 30, 100558. https://doi.org/10.1016/j.gfs.2021.100558

Farooq, S. (2009). Triticeae: The ultimate source of abiotic stress tolerance improvement in wheat. Salinity and Water Stress: Improving Crop Efficiency, 65–71. Springer Netherlands. https://doi.org/10.1007/978-1-4020-9065-3_7

Hernández, M. I., & Chailloux, M. (2004). Las micorrizas arbusculares y las bacterias rizosfericas como alternativa a la nutricion mineral del tomate. Cultivos Tropicales, 25(2), 5–12. Retrieved from https://www.redalyc.org/pdf/1932/193217832001.pdf

Hossain, M. M., Sultana, F., Kubota, M., & Hyakumachi, M. (2008). Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant and Soil, 304, 227–239. https://doi.org/10.1007/s11104-008-9542-3

Hossain, M. M., & Sultana, F. (2018). Methods for the characterization of plant-growth promoting rhizobacteria. Medina, C., López-Baena, F., editors. Host-Pathogen Interactions. Methods in Molecular Biology, Vol-1734. New York: Humana Press. https://doi.org/10.1007/978-1-4939-7604-1_24

Hossain, M. M., & Sultana, F. (2020). Application and mechanisms of plant growth promoting fungi (PGPF) for phytostimulation. Das, S. K., Editor. Organic Agriculture. IntechOpen: London, UK. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=sGwtEAAAQBAJ&oi=fnd&pg=PA65&dq=Application+and+mechanisms+of+plant+growth+promoting+fungi+(PGPF)+for+phytostimulation&ots=vvUL2cei4I&sig=8MpZTwLkd6Rk4yAZa3eSwIr8M4U&redir_esc=y#v=onepage&q=Application%20and%20mechanisms%20of%20plant%20growth%20promoting%20fungi%20(PGPF)%20for%20phytostimulation&f=false

Hossain, M. M., Sultana, F., & Islam, S. (2017). Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts, 135–191. Singapore: Springer. https://doi.org/10.1007/978-981-10-6593-4_6

Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 165532. https://doi.org/10.3389/fmicb.2015.01360

Kilic-Ekici, O., & Yuen, G. Y. (2003). Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology, 93(9), 1103–1110. https://doi.org/10.1094/PHYTO.2003.93.9.1103

Kumar, R. S., Ayyadurai, N., Pandiaraja, P., Reddy, A., Venkateswarlu, Y., Prakash, O., & Sakthivel, N. (2005). Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. Journal of Applied Microbiology, 98(1), 145–154. https://doi.org/10.1111/j.1365-2672.2004.02435.x

Li, H. B., Singh, R. K., Singh, P., Song, Q. Q., Xing, Y. X., Yang, L. T., & Li, Y. R. (2017). Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Frontiers in Microbiology, 8, 256166. https://doi.org/10.3389/fmicb.2017.01268

Masum, M., Liu, L., Yang, M., Hossain, M., Siddiqa, M., Supty, M., Ogunyemi, S., Hossain, A., An, Q., & Li, B. (2018). Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae. Journal of Applied Microbiology, 125(6), 1852–1867. https://doi.org/10.1111/jam.14088

Paungfoo-Lonhienne, C., Redding, M., Pratt, C., & Wang, W. (2019). Plant growth promoting rhizobacteria increase the efficiency of fertilizers while reducing nitrogen loss. Journal of Environmental Management, 233, 337–341. https://doi.org/10.1016/j.jenvman.2018.12.052

Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43(2), 191–208. https://doi.org/10.1080/03235400802404734

Rahman, M. F., Akanda, A. M., Eivy, F. Z., & Hossain, M. M. (2018). Effect of Bacillus amyloliquefaciens on plant growth and suppression of Bipolaris leaf blight in wheat. Annals of Bangladesh Agriculture, 22(2), 9–19. Retrieved from https://bsmrau.edu.bd/aba/wp-content/uploads/sites/320/2019/07/ARTICLE-2-1.pdf

Sharma, S. K. M. P., Ramesh, A., & Joshi, O. P. (2012). Characterisation of Zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. Journal of Microbiology and Biotechnology, 22(3), 352–359. https://doi.org/10.4014/jmb.1106.05063

Sierra, G. (1957). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek, 23(1), 15–22. https://doi.org/10.1007/bf02545855

Singh, D. P. (2017). Management of Wheat and Barley Diseases. Florida, United State: CRC Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=xKU5DwAAQBAJ&oi=fnd&pg=PT9&dq=Management+of+Wheat+and+Barley+Diseases&ots=qaVcurrexO&sig=9czukSzuLBXU86Jzcd7oszI3XXY&redir_esc=y#v=onepage&q=Management%20of%20Wheat%20and%20Barley%20Diseases&f=false

Singh, J., Chhabra, B., Raza, A., Yang, S. H., & Sandhu, K. S. (2023). Important wheat diseases in the US and their management in the 21st century. Frontiers in Plant Science, 13, 1010191. https://doi.org/10.3389/fpls.2022.1010191

Su, J., Zhao, J., Zhao, S., Li, M., Pang, S., Kang, Z., Zhen, W., Chen, S., Chen, F., & Wang, X. (2021). Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Frontiers in Genetics, 12, 699342. https://doi.org/10.3389/fgene.2021.699342

Sultana, F., & Hossain, M. M. (2022). Assessing the potentials of bacterial antagonists for plant growth promotion, nutrient acquisition, and biological control of Southern blight disease in tomato. PLoS ONE, 17(6), e0267253. https://doi.org/10.1371/journal.pone.0267253

Ullah, H., Yasmin, H., Mumtaz, S., Jabeen, Z., Naz, R., Nosheen, A., & Hassan, M. N. (2020). Multitrait Pseudomonas spp. Isolated from monocropped wheat (Triticum aestivum) suppress Fusarium root and crown rot. Phytopathology, 110(3), 582–592. https://doi.org/10.1094/phyto-10-19-0383-r

Vance, E., Brookes, P., & Jenkinson, D. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., Hou, Z., Luan, P., & Li, R. (2021). Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens, 10(11), 1526. https://doi.org/10.3390/pathogens10111526

Yue, H. M., Wang, B., & Gong, W. F. (2018). The screening and identification of the biological control fungi Chaetomium spp. against wheat common root rot. FEMS Microbiology Letters, 365(22), fny242. https://doi.org/10.1093/femsle/fny242

Zhang, Z., & Yuen, G. Y. (2000). The role of chitinase production by Stenotrophomonas maltophilia Strain C3 in biological control of Bipolaris sorokiniana. Phytopathology, 90(4), 384–389. https://doi.org/10.1094/phyto.2000.90.4.384

Refbacks

  • There are currently no refbacks.