Effect of Benzyl Amino Purine (BAP) on the Leaf Growth of Vanda limbata Blume Orchid In Vivo

Sischa Aulia Putri Az Zahra, Nintya Setiari, Yulita Nurchayati


Vanda limbata is a natural orchid with slow growth and is often taken directly from the forest in large quantities, threatening its sustainability. Ex-situ preservation efforts are needed for this orchid, one of which is through cultivation with the addition of Benzyl Amino Purin (BAP), known to increase shoot growth. This research aims to analyze the effect of BAP and determine its optimal concentration on the growth of V. limbata orchids. This research used a single-factor completely randomized design in BAP concentrations of 0, 25 and 50 mg l-1 with 5 replications. The method used was spraying BAP solution once a week on all parts of adult V. limbata orchids aged ±2 years. The research was conducted for 3 months in the experimental garden with parameters observed in the form of the number of new leaves, elongation of old leaves, the length of new leaves, increase in the width of old leaves, the width of new leaves, stomatal density and the number of roots. The results showed that the most effective BAP concentration was 50 mg l-1 for the number of new leaves which increased by 200%, the length of old leaves which increased by 168.66% and the length of new leaves which increased by 800%, but resulted in less stomatal density than the control. BAP can increase the growth of V. limbata orchid leaves. This research can be a recommendation for ex-situ conservation efforts that have the potential to be developed as a means of orchid cultivation.


cytokinin; orchid preservation; plant growth regulator

Full Text:



Albrecht, T., & Argueso, C. T. (2016). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Annals of Botany, 119(5), 725–735. https://doi.org/10.1093/aob/mcw211

Bryksová, M., Dabravolski, S., Kučerová, Z., Zavadil Kokáš, F., Špundová, M., Plíhalová, L., … & Doležal, K. (2020). Aromatic cytokinin arabinosides promote PAMP-like responses and positively regulate leaf longevity. ACS Chemical Biology, 15(7), 1949–1963. https://doi.org/10.1021/acschembio.0c00306

Burhan, B. (2017). Pengaruh jenis pupuk dan konsentrasi benzyladenin (BA) terhadap pertumbuhan dan pembungaan anggrek dendrobium hibrida. Jurnal Penelitian Pertanian Terapan, 16(3), 194–204. https://doi.org/10.25181/jppt.v16i3.98

Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., …. & Gray, J. E. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist, 221(1), 371–384. https://doi.org/10.1111/nph.15344

Campolongo, L., Carnelos, D., Miglioli, J. L., Fuginuma, P., Giardina, E., & Benedetto, A. Di. (2020). Physiological mechanism involved in the response to four lettuce varieties to a pre-transplant root restriction and a 6, benzyl aminopurine (BAP) spray. Asian Journal of Agricultural and Horticultural Research, 5(4), 27–43. https://doi.org/10.9734/ajahr/2020/v5i430059

Driesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy, 10(12), 1975. https://doi.org/10.3390/agronomy10121975

Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M. Al, Mitchell, A., Howells, R., Wallington, E., Fleming, A. J., & Gray, J. E. (2019). Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 70(18), 4737–4747. https://doi.org/10.1093/jxb/erz248

Dwiyanto, W., Soelistijono, R., & Utami, D. S. (2017). Karakterisasi morfologi dan anatomi isolat rhizoctonia mikoriza anggrek Vanda limbata. Jurnal Ilmiah Agrineca, 17(1), 1–11. https://doi.org/10.36728/afp.v17i1.563

Farber, M., Attia, Z., & Weiss, D. (2016). Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany, 67(22), 6351–6362. https://doi.org/10.1093/jxb/erw398

Fitzpatrick, T. B., & Chapman, L. M. (2020). The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. Journal of Biological Chemistry, 295(34), 12002–12013. https://doi.org/10.1074/jbc.REV120.010918

Gerry, Y., Permatasari, F., & Dewi, R. K. (2020). Keanekaragaman Anggrek di Taman Anggrek Badak LNG. Surabaya: ITS Press. Retrieved from https://scholar.google.co.id/scholar?cluster=14197169970862017106&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Hadiati, S. (2011). Pengaruh konsentrasi BAP terhadap pertumbuhan stek batang nenas (Ananas comosus L.). Agrin, 15(2), 127–132. Retrieved from https://www.jurnalagrin.net/index.php/agrin/article/view/188

Hira, A., & Bijaya, P. (2019). In vitro seed germination and seedling growth of the orchid Dendrobium primulinum Lindl. African Journal of Plant Science, 13(12), 324–331. https://doi.org/10.5897/ajps2019.1923

Karunadasa, S. S., Kurepa, J., Shull, T. E., & Smalle, J. A. (2020). Cytokinin-induced protein synthesis suppresses growth and osmotic stress tolerance. New Phytologist, 227(1), 50–64. https://doi.org/10.1111/nph.16519

Kasutjianingati, K., & Firgiyanto, R. (2018). Characterization of morphology from orchid Vanda sp. as a genetic information source for preservation and agribusiness of orchids in Indonesia. IOP Conference Series: Earth and Environmental Science, 207(1), 012006. https://doi.org/10.1088/1755-1315/207/1/012006

Khadr, A., Wang, Y. H., Zhang, R. R., Wang, X. R., Xu, Z. S., & Xiong, A. S. (2020). Cytokinin (6-benzylaminopurine) elevates lignification and the expression of genes involved in lignin biosynthesis of carrot. Protoplasma, 257(6), 1507–1517. https://doi.org/10.1007/s00709-020-01527-8

Kurepa, J., Shull, T. E., & Smalle, J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, 3(2), e00121. https://doi.org/10.1002/pld3.121

Kurepa, J., & Smalle, J. A. (2022). Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Sciences, 23(4), 1933. https://doi.org/10.3390/ijms23041933

Larekeng, S. H., Gusmiaty, G., & Nadhilla, D. (2020). In-vitro shoot induction of pring tutul (Bambusa maculata) through in various plant growth regulators (PGR). IOP Conference Series: Earth and Environmental Science, 575, 012139. https://doi.org/10.1088/1755-1315/575/1/012139

Lee, H. B., Im, N. H., An, S. K., & Kim, K. S. (2021). Changes of growth and inflorescence initiation by exogenous gibberellic acid3 and 6-benzylaminopurine application in Phalaenopsis Orchids. Agronomy, 11(2), 196. https://doi.org/10.3390/agronomy11020196

Márquez-López, R. E., Quintana-Escobar, A. O., & Loyola-Vargas, V. M. (2019). Cytokinins, the Cinderella of plant growth regulators. Phytochemistry Reviews, 18(6), 1387–1408. https://doi.org/10.1007/s11101-019-09656-6

Matteo, J., Rattin, J., & Benedetto, A. (2015). Increase of spinach growth through the use of larger plug cell volume and an exogenous BAP spray. American Journal of Experimental Agriculture, 6(6), 372–383. https://doi.org/10.9734/ajea/2015/14979

Maulia, E., Zuyasna, & Basyah, B. (2021). Growth of patchouli shoots (Pogostemon cablin Benth) with several concentrations of growth regulator substances in vitro. Journal of Agriculture and Veterinary Science, 14(1), 38–46. https://doi.org/10.9790/2380-1401013846

Nambiar, N., Siang, T. C., & Mahmood, M. (2012). Effect of 6-benzylaminopurine on flowering of a Dendrobium orchid. Australian Journal of Crop Science, 6(2), 225–231. Retrieved from https://www.cropj.com/nambiar_6_2_2012_225_231.pdf

Nurunisa, D., Sasongko, A. B., & Indrianto, A. (2018). Pengaruh warna cahaya light-emitting diodes (LED) intensitas rendah dan cekaman dingin terhadap pertumbuhan vegetatif anggrek Phalaenopsis hibrida. Jurnal Biota, 4(1), 41–48. https://doi.org/10.19109/biota.v4i1.1683

Putri, F. M., Suedy, S. W. A., & Darmanti, S. (2017). Pengaruh pupuk nanosilika terhadap jumlah stomata, kandungan klorofil dan pertumbuhan padi hitam (Oryza sativa L. cv. japonica). Buletin Anatomi Dan Fisiologi, 2(1), 72–79. Retrieved from https://ejournal2.undip.ac.id/index.php/baf/article/view/1096

Rahmah, A. U., Karno, & Anwar, S. (2023). Respon pertumbuhan dan produksi tanaman edamame (Glycine max L. Merr) pada berbagai konsentrasi pemberian GA3 dan BAP. Agrohita, 8(1), 106–114. https://dx.doi.org/10.31604/jap.v8i1.8145

Setiaji, A., Annisa, R. R., Santoso, A. dwi, Anggiresti, K., & Riyadi, A. D. R. (2021). Review: Factors affecting mass propagation of Vanda orchid in vitro. Cell Biology and Development, 5(2), 51–62. https://doi.org/10.13057/cellbioldev/v050201

Shimotohno, A., Aki, S. S., Takahashi, N., & Umeda, M. (2021). Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology, 72, 273–296. https://doi.org/10.1146/annurev-arplant-080720-103739

Suradinata, Y. R., Putri, I. E., & Kusumiyati. (2017). Pengaruh pemberian berbagai konsentrasi benzyl amino purine (BAP) terhadap pertumbuhan tiga kultivar tanaman Kamboja Jepang (Adenium arabicum). Jurnal Kultivasi, 16(1), 305–312. https://doi.org/10.24198/kultivasi.v16i1.11550

Susilowati, A., Novriyanti, E., Rachmat, H. H., Rangkuti, A. B., Harahap, M. M., Ginting, I. M., Kaban, N. S., & Iswanto, A. H. (2022). Foliar stomata characteristics of tree species in a university green open space. Biodiversitas, 23(3), 1482–1489. https://doi.org/10.13057/biodiv/d230336

Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8(1), 118. https://doi.org/10.1038/s41438-021-00558-3

Wybouw, B., & De Rybel, B. (2019). Cytokinin–A developing story. Trends in Plant Science, 24(2), 177–185. https://doi.org/10.1016/j.tplants.2018.10.012


  • There are currently no refbacks.