Pectinase Production by Rhizopus stolonifer A3 Isolated from Apple Peels
Abstract
Keywords
Full Text:
PDFReferences
Abd El-Rahim, W. M., Moawad, H., Hashem, M. M., Gebreil, G. M. M., & Zakaria, M. (2020). Highly efficient fungal pectinase and laccase producers among isolates from flax retting liquor. Biocatalysis and Agricultural Biotechnology, 25, 101570. https://doi.org/10.1016/j.bcab.2020.101570
Amilia, K. R., Sari, S. L. A., & Setyaningsih, R. (2017). Isolation and screening of pectinolytic fungi from orange (Citrus nobilis Tan.) and banana (Musa acuminata L.) fruit peel. IOP Conference Series: Materials Science and Engineering, 193(1), 012015. https://doi.org/10.1088/1757-899X/193/1/012015
Anisa, S. K., Ashwini, S., & Girish, K. (2013). Isolation and screening of Aspergillus spp. for pectinolytic activity. Electronic Journal of Biology, 9(2), 37–41. Retrieved from https://ejbio.imedpub.com/isolation-and-screening-of-aspergillussppfor-pectinolytic-activity.php?aid=5973
Bautista-Baños, S., Bosquez-Molina, E., & Barrera-Necha, L. L. (2014). Rhizopus stolonifer (Soft Rot). Postharvest Decay: Control Strategies, 1–44. https://doi.org/10.1016/B978-0-12-411552-1.00001-6
Begum, G. (2020). Optimization of cultural conditions, temperature and pH for production of pectinases by two species of Aspergillus. Bioscience Biotechnology Research Communications, 13(1), 353–361. https://doi.org/10.21786/bbrc/13.1/56
Bravo-Ruiz, G., Sassi, A. H., Marcet-Houben, M., Di Pietro, A., Gargouri, A., Gabaldon, T., & Roncero, M. I. G. (2017). Regulatory mechanisms of a highly pectinolytic mutant of Penicillium occitanis and functional analysis of a candidate gene in the plant pathogen Fusarium oxysporum. Frontiers in Microbiology, 8, 282461. https://doi.org/10.3389/fmicb.2017.01627
Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum - current status and future directions. Studies in Mycology, 73(1), 181–213. https://doi.org/10.3114/sim0014
Catalano, V., Rekab, D., Firrao, G., Vannacci, G., & Vergara, M. (2012). An endopolygalacturonase gene of Diaporthe helianthi. Phytopathologia Mediterranea, 51(1), 23–36. Retrieved from https://oajournals.fupress.net/index.php/pm/article/view/5461
Choi, J., Kim, K. T., Jeon, J., & Lee, Y. H. (2013). Fungal plant cell wall-degrading enzyme database: A platform for comparative and evolutionary genomics in fungi and oomycetes. BMC Genomics, 14(Suppl 5), S7. https://doi.org/10.1186/1471-2164-14-S5-S7
Chowdhury, T. I., Jubayer, F., Uddin, B., & Aziz, G. (2017). Production and characterization of pectinase enzyme from Rhizopus oryzae. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 641–651. https://doi.org/10.5219/656
Ellouz Chaabouni, S., Belguith, H., Hassairi, I., M’rad, K., & Ellouz, R. (1995). Optimization of cellulase production by Penicillium occitanis. Applied Microbiology and Biotechnology, 43, 267–269. https://doi.org/10.1007/BF00172822
Flutto, L. (2003). Pectin: Properties and determination. Encyclopedia of Food Sciences and Nutrition (Second Edition), 4440–4449. https://doi.org/10.1016/B0-12-227055-X/00901-9
Gao, Y. H., Sun, W., Su, Y. Y., & Cai, L. (2014). Three new species of phomopsis in Gutianshan Nature Reserve in China. Mycological Progress, 13(1), 111–121. https://doi.org/10.1007/s11557-013-0898-2
Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., & Mahajan, R. (2016). Microbial pectinases: An ecofriendly tool of nature for industries. 3 Biotech, 6, 47. https://doi.org/10.1007/s13205-016-0371-4
Hadj-Taieb, N., Tounsi, H., Chabchoub, A., Abid, N., & Gargouri, A. (2011). Studies on the zymogram method for the detection of pectinolytic activities using CTAB. Applied Biochemistry and Biotechnology, 165(7–8), 1652–1660. https://doi.org/10.1007/s12010-011-9384-y
Haile, S., & Ayele, A. (2022). Pectinase from microorganisms and its industrial applications. The Scientific World Journal, 2022, 1881305. https://doi.org/10.1155/2022/1881305
Hartanti, A. T., Raharjo, A., & Gunawan, A. W. (2020). Rhizopus rotting on agricultural products in Jakarta. HAYATI Journal of Biosciences, 27(1), 37–44. https://doi.org/10.4308/hjb.27.1.37
Islam, F., & Roy, N. (2018). Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Research Notes, 11(1), 445. https://doi.org/10.1186/s13104-018-3558-4
Javed, R., Nawaz, A., Munir, M., Hanif, M., Mukhtar, H., Haq, I. U., & Abdullah, R. (2018). Extraction, purification and industrial applications of pectinase: A review. Journal of Biotechnology & Bioresearch, 1(1), 1–6. Retrieved from https://crimsonpublishers.com/jbb/fulltext/JBB.000503.php
Jaworska, G., Szarek, N., & Hanus, P. (2022). Effect of celeriac pulp maceration by Rhizopus sp. pectinase on juice quality. Molecules, 27(23), 8610. https://doi.org/10.3390/molecules27238610
Kameshwar, A. K. S., & Qin, W. (2018). Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: A review. Bioresources and Bioprocessing, 5(1), 43. https://doi.org/10.1186/s40643-018-0230-8
Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77(3), 215–227. https://doi.org/10.1016/S0960-8524(00)00118-8
Kaur, D., Sharma, V., Joshi, A., Batra, N., Ramniwas, S., & Sharma, A. K. (2023). Pectinases as promising green biocatalysts having broad-spectrum applications: Recent trends, scope, and relevance. Biotechnology and Applied Biochemistry, 70(5), 1663–1678. https://doi.org/10.1002/BAB.2464
Khare, V., Mehta, A., & Mehta, P. (1994). Production of pectolytic and cellulolytic enzymes by Phomopsis species during pathogenesis of Psidium guajava and Achras sapota fruits. Microbiological Research, 149(3), 283–286. https://doi.org/10.1016/S0944-5013(11)80070-4
Klich, M. A. (2007). Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 8(6), 713–722. https://doi.org/10.1111/j.1364-3703.2007.00436.x
Kumar, S. (2015). Role of enzymes in fruit juice processing and its quality enhancement. Pelagia Research Library Advances in Applied Science Research, 6(6), 114–124. Retrieved from https://www.primescholars.com/abstract/role-of-enzymes-in-fruit-juice-processing-and-its-quality-enhancementshiv-kumar-88864.html
Lennartsson, P. R., Taherzadeh, M. J., & Edebo, L. (2014). Rhizopus. Encyclopedia of Food Microbiology: Second Edition, 284–290. https://doi.org/10.1016/B978-0-12-384730-0.00391-8
Miller, G. L. (1959). Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
Okayo, R. O., Andika, D. O., Dida, M. M., K’otuto, G. O., & Gichimu, B. M. (2020). Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. International Journal of Microbiology, 2020, 8854718. https://doi.org/10.1155/2020/8854718
Okonji, R. E., Itakorode, B. O., Ovumedia, J. O., & Adedeji, O. S. (2019). Purification and biochemical characterization of pectinase produced by Aspergillus fumigatus isolated from soil of decomposing plant materials. Journal of Applied Biology and Biotechnology, 7(3), 1–8. https://doi.org/10.7324/JABB.2019.70301
Omoifo, C. O. (2011). Rhizopus stolonifer exhibits dimorphism. African Journal of Biotechnology, 10(20), 4269–4275. https://doi.org/10.5897/AJB09.786
Oumer, O. J. (2017). Pectinase: Substrate, production and their biotechnological applications. International Journal of Environment, Agriculture and Biotechnology, 2(3), 1007–1014. https://doi.org/10.22161/ijeab/2.3.1
Oumer, O. J., & Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International, 2018, 2961767. https://doi.org/10.1155/2018/2961767
Paccanaro, M. C., Sella, L., Castiglioni, C., Giacomello, F., Martínez-Rocha, A. L., D’Ovidio, R., Schäfer, W., & Favaron, F. (2017). Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Molecular Plant-Microbe Interactions, 30(11), 886–895. https://doi.org/10.1094/MPMI-07-17-0179-R
Panda, S., Sahoo, K., Das, R., & Dhal, N. K. (2012). Pectinolytic and cellulolytic activity of soil fungal isolates from Similipal Bioreserve Forest. World Environment, 2(2), 1–3. https://doi.org/10.5923/j.env.20120202.01
Patel, V. B., Chatterjee, S., & Dhoble, A. S. (2022). A review on pectinase properties, application in juice clarification, and membranes as immobilization support. Journal of Food Science, 87(8), 3338–3354. https://doi.org/10.1111/1750-3841.16233
Perincherry, L., Ajmi, C., Oueslati, S., Waśkiewicz, A., & Stępień, Ł. (2020). Induction of Fusarium lytic enzymes by extracts from resistant and susceptible cultivars of pea (Pisum sativum L.). Pathogens, 9(11), 976. https://doi.org/10.3390/pathogens9110976
Petrovic, K., Riccioni, L., Dordevic, V., Tubic, B. S., Miladinovic, J., Ceran, M., & Rajkovic, D. (2018). Diaporth pseudolongicolla: The new pathogen on soy seed in Serbia. Ratarstvo & Povrtarstvo, 55(2), 103–109. https://doi.org/10.5937/ratpov55-18582
Praveen, K., & Suneetha, V. (2016). Microbial pectinases: Wonderful enzymes in fruit juice clarification. International Journal of MediPharm Research, 02(02), 119–127. Retrieved from https://medipharmsai.com/download/article/28052016_1462115662/1462116568.pdf
Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A Primer for the natural products research community. Journal of Natural Products, 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085
Sandhya, R. (2013). Screening and isolation of pectinase from fruit and vegetable wastes and the use of orange waste as a substrate for pectinase production. International Research Journal of Biological Sciences, 2(9), 2278–3202. Retrieved from http://www.isca.me/IJBS/Archive/v2/i9/7.ISCA-IRJBS-2013-115.pdf
Sethi, B. K., Nanda, P. K., & Sahoo, S. (2016). Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech, 6, 36. https://doi.org/10.1007/s13205-015-0353-y
Sharafaddin, A. H., Hamad, Y. K., El_Komy, M. H., Ibrahim, Y. E., Widyawan, A., Molan, Y. Y., & Saleh, A. A. (2019). Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity. European Journal of Plant Pathology, 155(3), 871–880. https://doi.org/10.1007/s10658-019-01818-8
Shrestha, S., Rahman, M. S., & Qin, W. (2021). New insights in pectinase production development and industrial applications. Applied Microbiology and Biotechnology, 105(24), 9069–9087. https://doi.org/10.1007/s00253-021-11705-0
Singh, A., Kaur, A., Dua, A., & Mahajan, R. (2015). An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Research, 2015, 725281. https://doi.org/10.1155/2015/725281
Singh, R. S., Singh, T., & Pandey, A. (2019). Microbial enzymes-an overview. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology, 1–40. https://doi.org/10.1016/B978-0-444-64114-4.00001-7
Suhaimi, H., Dailin, D. J., Malek, R. A., Hanapi, S. Z., Ambehabati, K. K., Keat, H. C., ... & El Enshasy, H. (2021). Fungal pectinases: Production and applications in food industries. Fungi in Sustainable Food Production, 85–115. Springer. https://doi.org/10.1007/978-3-030-64406-2_6
Takcı, H. A. M., & Turkmen, F. U. (2016). Extracellular pectinase production and purification from a newly isolated Bacillus subtilis Strain. International Journal of Food Properties, 19(11), 2443–2450. https://doi.org/10.1080/10942912.2015.1123270
Uematsu, S., Kageyama, K., Moriwaki, J., & Sato, T. (2012). Colletotrichum carthami comb. nov., an anthracnose pathogen of safflower, garland chrysanthemum and pot marigold, revived by molecular phylogeny with authentic herbarium specimens. Journal of General Plant Pathology, 78(5), 316–330. https://doi.org/10.1007/s10327-012-0397-3
Vedashree, S., Sateesh, M. K., Lakshmeesha, T. R., & Mohammed, S. S. (2013). Screening and assay of extracellular enzymes in Phomopsis azadirachtae causing die-back disease of neem. International Journal of Agricultural Technology, 9(4), 915–927. Retrieved from http://www.ijat-aatsea.com/pdf/v9_n4_13_July/15_IJAT_2013_9(4)_Vedashree%20Sobagaiah-biotechnology.pdf
Velho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to apple bitter rot and glomerella leaf spot. Mycology, 9(2), 145–154. https://doi.org/10.1080/21501203.2018.1464525
Virk, B. S., & Sogi, D. S. (2004). Extraction and characterization of pectin from apple (Malus Pumila. Cv Amri) peel waste. International Journal of Food Properties, 7(3), 693–703. https://doi.org/10.1081/JFP-200033095
Vitale, S., Santori, A., Wajnberg, E., Castagnone-Sereno, P., Luongo, L., & Belisario, A. (2011). Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Mycology, 101(6), 679–686. https://doi.org/10.1094/PHYTO-04-10-0120
Yadav, P. K., Singh, V. K., Yadav, S., Yadav, K. D. S., & Yadav, D. (2009). In silico analysis of pectin lyase and pectinase sequences. Biochemistry (Moscow), 74(9), 1049–1055. https://doi.org/10.1134/S0006297909090144
Yadav, S., Anand, G., Dubey, A. K., & Yadav, D. (2012). Purification and characterization of an exo-polygalacturonase secreted by Rhizopus oryzae MTCC 1987 and its role in retting of Crotalaria juncea fibre. Biologia (Poland), 67(6), 1069–1074. https://doi.org/10.2478/s11756-012-0122-x
Zhang, J., Bruton, B. D., & Biles, C. L. (1997). Polygalacturonase isozymes produced by Phomopsis cucurbitae in relation to postharvest decay of cantaloupe fruit. Phytopathology, 87(10), 1020–1025. https://doi.org/10.1094/PHYTO.1997.87.10.1020
Refbacks
- There are currently no refbacks.