Pectinase Production by Rhizopus stolonifer A3 Isolated from Apple Peels

Siti Lusi Arum Sari, Wida Puspa Tanjung, Klara Rizky Amilia, Ratna Setyaningsih, Artini Pangastuti

Abstract

The application of pectinase in industries will continue to be developed. To broaden the applicability of enzyme manufacturing in new industries, more research to investigate pectinolytic microorganisms with high activity and stability is still required. Therefore, this study aimed to obtain pectinolytic fungi that have the potential as pectinase producers. Pectinolytic fungi were isolated from rotten apple peels and selected based on clear zone formation on pectic agar media after cetyl trimethyl ammonium bromide (CTAB) staining. Pectinolytic fungi were identified based on 18S rRNA partial gene sequences and morphological characteristics. Pectinase production used Mandels and Weber medium with citrus pectin 20 g l-1 addition. Pectinase activity was determined based on the measurement of reducing sugars by a colorimetric method. A total of 5 fungal isolates were successfully isolated. All of the isolates had pectinolytic activities with clear zone diameters ranging between 0.99 to 7.32 mm. The isolate A3 showing the highest pectinolytic activity was identified as Rhizopus stolonifer. Microscopically, R. stolonifer A3 showed typical characteristics for Rhizopus, characterized by the presence of rhizoids, stolons and sporangiophores bearing a single spherical sporangium. The pectinase production of R. stolonifer A3 was optimum at initial pH 5.0, temperature 35 °C and incubation period of 3 days with pectinase activity of 14.75 U ml-1. R. stolonifer A3 produced acidic pectinase having optimum activity at pH 5.0 and temperature 50 °C. Thus R. stolonifer A3 has the potential to be used as a producer of acidic pectinase appropriate for use in the processing of fruit products.

Keywords

apple peel; pectinase; pectinolytic fungi; Rhizopus stolonifer

Full Text:

PDF

References

Abd El-Rahim, W. M., Moawad, H., Hashem, M. M., Gebreil, G. M. M., & Zakaria, M. (2020). Highly efficient fungal pectinase and laccase producers among isolates from flax retting liquor. Biocatalysis and Agricultural Biotechnology, 25, 101570. https://doi.org/10.1016/j.bcab.2020.101570

Amilia, K. R., Sari, S. L. A., & Setyaningsih, R. (2017). Isolation and screening of pectinolytic fungi from orange (Citrus nobilis Tan.) and banana (Musa acuminata L.) fruit peel. IOP Conference Series: Materials Science and Engineering, 193(1), 012015. https://doi.org/10.1088/1757-899X/193/1/012015

Anisa, S. K., Ashwini, S., & Girish, K. (2013). Isolation and screening of Aspergillus spp. for pectinolytic activity. Electronic Journal of Biology, 9(2), 37–41. Retrieved from https://ejbio.imedpub.com/isolation-and-screening-of-aspergillussppfor-pectinolytic-activity.php?aid=5973

Bautista-Baños, S., Bosquez-Molina, E., & Barrera-Necha, L. L. (2014). Rhizopus stolonifer (Soft Rot). Postharvest Decay: Control Strategies, 1–44. https://doi.org/10.1016/B978-0-12-411552-1.00001-6

Begum, G. (2020). Optimization of cultural conditions, temperature and pH for production of pectinases by two species of Aspergillus. Bioscience Biotechnology Research Communications, 13(1), 353–361. https://doi.org/10.21786/bbrc/13.1/56

Bravo-Ruiz, G., Sassi, A. H., Marcet-Houben, M., Di Pietro, A., Gargouri, A., Gabaldon, T., & Roncero, M. I. G. (2017). Regulatory mechanisms of a highly pectinolytic mutant of Penicillium occitanis and functional analysis of a candidate gene in the plant pathogen Fusarium oxysporum. Frontiers in Microbiology, 8, 282461. https://doi.org/10.3389/fmicb.2017.01627

Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum - current status and future directions. Studies in Mycology, 73(1), 181–213. https://doi.org/10.3114/sim0014

Catalano, V., Rekab, D., Firrao, G., Vannacci, G., & Vergara, M. (2012). An endopolygalacturonase gene of Diaporthe helianthi. Phytopathologia Mediterranea, 51(1), 23–36. Retrieved from https://oajournals.fupress.net/index.php/pm/article/view/5461

Choi, J., Kim, K. T., Jeon, J., & Lee, Y. H. (2013). Fungal plant cell wall-degrading enzyme database: A platform for comparative and evolutionary genomics in fungi and oomycetes. BMC Genomics, 14(Suppl 5), S7. https://doi.org/10.1186/1471-2164-14-S5-S7

Chowdhury, T. I., Jubayer, F., Uddin, B., & Aziz, G. (2017). Production and characterization of pectinase enzyme from Rhizopus oryzae. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 641–651. https://doi.org/10.5219/656

Ellouz Chaabouni, S., Belguith, H., Hassairi, I., M’rad, K., & Ellouz, R. (1995). Optimization of cellulase production by Penicillium occitanis. Applied Microbiology and Biotechnology, 43, 267–269. https://doi.org/10.1007/BF00172822

Flutto, L. (2003). Pectin: Properties and determination. Encyclopedia of Food Sciences and Nutrition (Second Edition), 4440–4449. https://doi.org/10.1016/B0-12-227055-X/00901-9

Gao, Y. H., Sun, W., Su, Y. Y., & Cai, L. (2014). Three new species of phomopsis in Gutianshan Nature Reserve in China. Mycological Progress, 13(1), 111–121. https://doi.org/10.1007/s11557-013-0898-2

Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., & Mahajan, R. (2016). Microbial pectinases: An ecofriendly tool of nature for industries. 3 Biotech, 6, 47. https://doi.org/10.1007/s13205-016-0371-4

Hadj-Taieb, N., Tounsi, H., Chabchoub, A., Abid, N., & Gargouri, A. (2011). Studies on the zymogram method for the detection of pectinolytic activities using CTAB. Applied Biochemistry and Biotechnology, 165(7–8), 1652–1660. https://doi.org/10.1007/s12010-011-9384-y

Haile, S., & Ayele, A. (2022). Pectinase from microorganisms and its industrial applications. The Scientific World Journal, 2022, 1881305. https://doi.org/10.1155/2022/1881305

Hartanti, A. T., Raharjo, A., & Gunawan, A. W. (2020). Rhizopus rotting on agricultural products in Jakarta. HAYATI Journal of Biosciences, 27(1), 37–44. https://doi.org/10.4308/hjb.27.1.37

Islam, F., & Roy, N. (2018). Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Research Notes, 11(1), 445. https://doi.org/10.1186/s13104-018-3558-4

Javed, R., Nawaz, A., Munir, M., Hanif, M., Mukhtar, H., Haq, I. U., & Abdullah, R. (2018). Extraction, purification and industrial applications of pectinase: A review. Journal of Biotechnology & Bioresearch, 1(1), 1–6. Retrieved from https://crimsonpublishers.com/jbb/fulltext/JBB.000503.php

Jaworska, G., Szarek, N., & Hanus, P. (2022). Effect of celeriac pulp maceration by Rhizopus sp. pectinase on juice quality. Molecules, 27(23), 8610. https://doi.org/10.3390/molecules27238610

Kameshwar, A. K. S., & Qin, W. (2018). Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: A review. Bioresources and Bioprocessing, 5(1), 43. https://doi.org/10.1186/s40643-018-0230-8

Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77(3), 215–227. https://doi.org/10.1016/S0960-8524(00)00118-8

Kaur, D., Sharma, V., Joshi, A., Batra, N., Ramniwas, S., & Sharma, A. K. (2023). Pectinases as promising green biocatalysts having broad-spectrum applications: Recent trends, scope, and relevance. Biotechnology and Applied Biochemistry, 70(5), 1663–1678. https://doi.org/10.1002/BAB.2464

Khare, V., Mehta, A., & Mehta, P. (1994). Production of pectolytic and cellulolytic enzymes by Phomopsis species during pathogenesis of Psidium guajava and Achras sapota fruits. Microbiological Research, 149(3), 283–286. https://doi.org/10.1016/S0944-5013(11)80070-4

Klich, M. A. (2007). Aspergillus flavus: The major producer of aflatoxin. Molecular Plant Pathology, 8(6), 713–722. https://doi.org/10.1111/j.1364-3703.2007.00436.x

Kumar, S. (2015). Role of enzymes in fruit juice processing and its quality enhancement. Pelagia Research Library Advances in Applied Science Research, 6(6), 114–124. Retrieved from https://www.primescholars.com/abstract/role-of-enzymes-in-fruit-juice-processing-and-its-quality-enhancementshiv-kumar-88864.html

Lennartsson, P. R., Taherzadeh, M. J., & Edebo, L. (2014). Rhizopus. Encyclopedia of Food Microbiology: Second Edition, 284–290. https://doi.org/10.1016/B978-0-12-384730-0.00391-8

Miller, G. L. (1959). Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

Okayo, R. O., Andika, D. O., Dida, M. M., K’otuto, G. O., & Gichimu, B. M. (2020). Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. International Journal of Microbiology, 2020, 8854718. https://doi.org/10.1155/2020/8854718

Okonji, R. E., Itakorode, B. O., Ovumedia, J. O., & Adedeji, O. S. (2019). Purification and biochemical characterization of pectinase produced by Aspergillus fumigatus isolated from soil of decomposing plant materials. Journal of Applied Biology and Biotechnology, 7(3), 1–8. https://doi.org/10.7324/JABB.2019.70301

Omoifo, C. O. (2011). Rhizopus stolonifer exhibits dimorphism. African Journal of Biotechnology, 10(20), 4269–4275. https://doi.org/10.5897/AJB09.786

Oumer, O. J. (2017). Pectinase: Substrate, production and their biotechnological applications. International Journal of Environment, Agriculture and Biotechnology, 2(3), 1007–1014. https://doi.org/10.22161/ijeab/2.3.1

Oumer, O. J., & Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International, 2018, 2961767. https://doi.org/10.1155/2018/2961767

Paccanaro, M. C., Sella, L., Castiglioni, C., Giacomello, F., Martínez-Rocha, A. L., D’Ovidio, R., Schäfer, W., & Favaron, F. (2017). Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Molecular Plant-Microbe Interactions, 30(11), 886–895. https://doi.org/10.1094/MPMI-07-17-0179-R

Panda, S., Sahoo, K., Das, R., & Dhal, N. K. (2012). Pectinolytic and cellulolytic activity of soil fungal isolates from Similipal Bioreserve Forest. World Environment, 2(2), 1–3. https://doi.org/10.5923/j.env.20120202.01

Patel, V. B., Chatterjee, S., & Dhoble, A. S. (2022). A review on pectinase properties, application in juice clarification, and membranes as immobilization support. Journal of Food Science, 87(8), 3338–3354. https://doi.org/10.1111/1750-3841.16233

Perincherry, L., Ajmi, C., Oueslati, S., Waśkiewicz, A., & Stępień, Ł. (2020). Induction of Fusarium lytic enzymes by extracts from resistant and susceptible cultivars of pea (Pisum sativum L.). Pathogens, 9(11), 976. https://doi.org/10.3390/pathogens9110976

Petrovic, K., Riccioni, L., Dordevic, V., Tubic, B. S., Miladinovic, J., Ceran, M., & Rajkovic, D. (2018). Diaporth pseudolongicolla: The new pathogen on soy seed in Serbia. Ratarstvo & Povrtarstvo, 55(2), 103–109. https://doi.org/10.5937/ratpov55-18582

Praveen, K., & Suneetha, V. (2016). Microbial pectinases: Wonderful enzymes in fruit juice clarification. International Journal of MediPharm Research, 02(02), 119–127. Retrieved from https://medipharmsai.com/download/article/28052016_1462115662/1462116568.pdf

Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A Primer for the natural products research community. Journal of Natural Products, 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085

Sandhya, R. (2013). Screening and isolation of pectinase from fruit and vegetable wastes and the use of orange waste as a substrate for pectinase production. International Research Journal of Biological Sciences, 2(9), 2278–3202. Retrieved from http://www.isca.me/IJBS/Archive/v2/i9/7.ISCA-IRJBS-2013-115.pdf

Sethi, B. K., Nanda, P. K., & Sahoo, S. (2016). Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech, 6, 36. https://doi.org/10.1007/s13205-015-0353-y

Sharafaddin, A. H., Hamad, Y. K., El_Komy, M. H., Ibrahim, Y. E., Widyawan, A., Molan, Y. Y., & Saleh, A. A. (2019). Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity. European Journal of Plant Pathology, 155(3), 871–880. https://doi.org/10.1007/s10658-019-01818-8

Shrestha, S., Rahman, M. S., & Qin, W. (2021). New insights in pectinase production development and industrial applications. Applied Microbiology and Biotechnology, 105(24), 9069–9087. https://doi.org/10.1007/s00253-021-11705-0

Singh, A., Kaur, A., Dua, A., & Mahajan, R. (2015). An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Research, 2015, 725281. https://doi.org/10.1155/2015/725281

Singh, R. S., Singh, T., & Pandey, A. (2019). Microbial enzymes-an overview. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology, 1–40. https://doi.org/10.1016/B978-0-444-64114-4.00001-7

Suhaimi, H., Dailin, D. J., Malek, R. A., Hanapi, S. Z., Ambehabati, K. K., Keat, H. C., ... & El Enshasy, H. (2021). Fungal pectinases: Production and applications in food industries. Fungi in Sustainable Food Production, 85–115. Springer. https://doi.org/10.1007/978-3-030-64406-2_6

Takcı, H. A. M., & Turkmen, F. U. (2016). Extracellular pectinase production and purification from a newly isolated Bacillus subtilis Strain. International Journal of Food Properties, 19(11), 2443–2450. https://doi.org/10.1080/10942912.2015.1123270

Uematsu, S., Kageyama, K., Moriwaki, J., & Sato, T. (2012). Colletotrichum carthami comb. nov., an anthracnose pathogen of safflower, garland chrysanthemum and pot marigold, revived by molecular phylogeny with authentic herbarium specimens. Journal of General Plant Pathology, 78(5), 316–330. https://doi.org/10.1007/s10327-012-0397-3

Vedashree, S., Sateesh, M. K., Lakshmeesha, T. R., & Mohammed, S. S. (2013). Screening and assay of extracellular enzymes in Phomopsis azadirachtae causing die-back disease of neem. International Journal of Agricultural Technology, 9(4), 915–927. Retrieved from http://www.ijat-aatsea.com/pdf/v9_n4_13_July/15_IJAT_2013_9(4)_Vedashree%20Sobagaiah-biotechnology.pdf

Velho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to apple bitter rot and glomerella leaf spot. Mycology, 9(2), 145–154. https://doi.org/10.1080/21501203.2018.1464525

Virk, B. S., & Sogi, D. S. (2004). Extraction and characterization of pectin from apple (Malus Pumila. Cv Amri) peel waste. International Journal of Food Properties, 7(3), 693–703. https://doi.org/10.1081/JFP-200033095

Vitale, S., Santori, A., Wajnberg, E., Castagnone-Sereno, P., Luongo, L., & Belisario, A. (2011). Morphological and molecular analysis of Fusarium lateritium, the cause of gray necrosis of hazelnut fruit in Italy. Mycology, 101(6), 679–686. https://doi.org/10.1094/PHYTO-04-10-0120

Yadav, P. K., Singh, V. K., Yadav, S., Yadav, K. D. S., & Yadav, D. (2009). In silico analysis of pectin lyase and pectinase sequences. Biochemistry (Moscow), 74(9), 1049–1055. https://doi.org/10.1134/S0006297909090144

Yadav, S., Anand, G., Dubey, A. K., & Yadav, D. (2012). Purification and characterization of an exo-polygalacturonase secreted by Rhizopus oryzae MTCC 1987 and its role in retting of Crotalaria juncea fibre. Biologia (Poland), 67(6), 1069–1074. https://doi.org/10.2478/s11756-012-0122-x

Zhang, J., Bruton, B. D., & Biles, C. L. (1997). Polygalacturonase isozymes produced by Phomopsis cucurbitae in relation to postharvest decay of cantaloupe fruit. Phytopathology, 87(10), 1020–1025. https://doi.org/10.1094/PHYTO.1997.87.10.1020

Refbacks

  • There are currently no refbacks.