Composting of Rice Straw–Based Materials using Aerobic Bioactivator Isolated from Rice Straw, Mahogany Bark and Cassava Peels
Abstract
Keywords
Full Text:
PDFReferences
Abdel-Rahman, M. A., Nour El-Din, M., Refaat, B. M., Abdel-Shakour, E. H., Ewais, E. E. D., & Alrefaey, H. M. A. (2016). Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw. Annals of Agricultural Sciences, 61(1), 135–143. https://doi.org/10.1016/j.aoas.2015.11.006
Alromian, F. M. (2020). Effect of type of compost and application rate on growth and quality of lettuce plant. Journal of Plant Nutrition, 43(18), 2797–2809. https://doi.org/10.1080/01904167.2020.1793185
Asses, N., Farhat, W., Hamdi, M., & Bouallagui, H. (2019). Large scale composting of poultry slaughterhouse processing waste: Microbial removal and agricultural biofertilizer application. Process Safety and Environmental Protection, 124, 128–136. https://doi.org/10.1016/j.psep.2019.02.004
Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Wong, J. W. C., & Selvam, A. (2014). Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource Technology, 168, 214–221. https://doi.org/10.1016/j.biortech.2014.01.048
Bao, Q., Huang, Y., Wang, F., Nie, S., Nicol, G. W., Yao, H., & Ding, L. (2016). Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil. Applied Microbiology and Biotechnology, 100(13), 5989–5998. https://doi.org/10.1007/s00253-016-7377-z
Beukes, N., & Pletschke, B. I. (2006). Effect of sulfur-containing compounds on Bacillus cellulosome-associated “CMCase” and “Avicelase” activities. FEMS Microbiology Letters, 264(2), 226–231. https://doi.org/10.1111/j.1574-6968.2006.00465.x
Bremner, J., & Mulvaney, C. (1982). Nitrogen—total. Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624). https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Cahyani, V. R., Matsuya, K., Asakawa, S., & Kimura, M. (2003). Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis. Soil Science and Plant Nutrition, 49(4), 619–630. https://doi.org/10.1080/00380768.2003.10410052
Cahyani, V. R., Matsuya, K., Asakawa, S., & Kimura, M. (2004a). Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biology and Fertility of Soils, 40(5), 334–344. https://doi.org/10.1007/s00374-004-0783-x
Cahyani, V. R., Matsuya, K., Asakawa, S., & Kimura, M. (2004b). Succession and phylogenetic profile of methanogenic archaeal communities during the composting process of rice straw estimated by PCR-DGGE analysis. Soil Science and Plant Nutrition, 50(4), 555–563. https://doi.org/10.1080/00380768.2004.10408512
Cahyani, V. R., Murase, J., Asakawa, S., & Kimura, M. (2009). Change in T4-type bacteriophage communities during the composting process of rice straw: Estimation from the major capsid gene (g23) sequences. Soil Science and Plant Nutrition, 55(4), 468–477. https://doi.org/10.1111/j.1747-0765.2009.00391.x
Cahyani, V. R., Rahayu, Hadiwiyono, Purwanto, E., Sakya, A. T., Azzahra, N. Y., & Lakshitarsari, K. P. (2021). Effect of lignocellulolytic microorganisms isolated from the peel of cassava, rice straw, and sawdust for the composting process of rice straw. IOP Conference Series: Earth and Environmental Science, 905(1), 012114. https://doi.org/10.1088/1755-1315/905/1/012114
Cahyani, V. R., Watanabe, A., Matsuya, K., Asakawa, S., & Kimura, M. (2002). Succession of microbiota estimated by phospholipid fatty acid analysis and changes in organic constituents during the composting process of rice straw. Soil Science and Plant Nutrition, 48(5), 735–743. https://doi.org/10.1080/00380768.2002.10409264
Chang, C. H., & Yang, S. S. (2009). Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresource Technology, 100(4), 1648–1658. https://doi.org/10.1016/j.biortech.2008.09.009
Che Jusoh, M. L., Abd Manaf, L., & Abdul Latiff, P. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science and Engineering, 10(17), 1–9. https://doi.org/10.1186/1735-2746-10-17
Chung, W. J., Chang, S. W., Chaudhary, D. K., Shin, J. D., Kim, H., Karmegam, N., Govarthanan, M., Chandrasekaran, M., & Ravindran, B. (2021). Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure. Chemosphere, 283, 131129. https://doi.org/10.1016/j.chemosphere.2021.131129
Dinh, H. T., Kaewpradit, W., Jogloy, S., Vorasoot, N., & Patanothai, A. (2014). Nutrient uptake of peanut genotypes with different levels of drought tolerance under midseason drought. Turkish Journal of Agriculture and Forestry, 38(4), 495–505. https://doi.org/10.3906/tar-1309-45
Dobermann, A., & Fairhurst, T. H. (2002). Rice straw management. Better Crops International, 16(1), 7–11. Retrieved from http://ipni.net/publication/bci.nsf/0/163087B956D0EFF485257BBA006531E8/$FILE/Better%20Crops%20International%202002-3%20p07.pdf
Duta, F. P., De França, F. P., Sérvulo, E. F. C., Lopes, L. M. D. A., Costa, A. C. A. Da, & Barros, A. (2004). Effect of process parameters on production of a biopolymer by Rhizobium sp. Applied Biochemistry and Biotechnology, 114(1–3), 639–652. https://doi.org/10.1385/ABAB:114:1-3:639
El-Haddad, M. E., Zayed, M. S., El-Sayed, G. A. M., Hassanein, M. K., & Abd El-Satar, A. M. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2), 243–251. https://doi.org/10.1016/j.aoas.2014.11.013
Elorrieta, M. A., Suárez-Estrella, F., López, M. J., Vargas-García, M. C., & Moreno, J. (2003). Survival of phytopathogenic bacteria during waste composting. Agriculture, Ecosystems and Environment, 96(1–3), 141–146. https://doi.org/10.1016/S0167-8809(02)00170-6
Fahruddin, F., Nafie, N. La, Abdullah, A., Tuwo, M., & Awaluddin. (2021). Treatment of compost as a source of organic material for bacterial consortium in the removal of sulfate and heavy metal lead (Pb) from acid mine drainage. Journal of Degraded and Mining Lands Management, 9(1), 3083–3091. https://doi.org/10.15243/JDMLM.2021.091.3083
FAO. (2018). Rice Market Monitor: Vol. XXI (Issue 1). Retrieved from www.fao.org/economic/RMM
Finstein, M. S., & Morris, M. L. (1975). Microbiology of municipal solid waste composting. Advances in Applied Microbiology, 19, 113–151. https://doi.org/10.1016/S0065-2164(08)70427-1
Gaind, S. (2014). Effect of fungal consortium and animal manure amendments on phosphorus fractions of paddy-straw compost. International Biodeterioration & Biodegradation, 94, 90–97. https://doi.org/10.1016/j.ibiod.2014.06.023
Gislin, D., Sudarsanam, D., Antony Raj, G., & Baskar, K. (2018). Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. Journal of Genetic Engineering and Biotechnology, 16(2), 287–294. https://doi.org/10.1016/j.jgeb.2018.05.010
Higa, T., & Parr, J. F. (1994). Beneficial and effective microorganisms for a sustainable agriculture and environment (Vol. 1, pp. 16–16). Atami: International Nature Farming Research Center. Retrieved from https://www.academia.edu/82273393/Beneficial_and_effective_microorganisms_for_a_sustainable_agriculture_and_environment
Jusoh, M. L. C., Manaf, L. A., & Latiff, P. A. (2013). Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health, Science and Engineering, 10, 1–9. https://doi.org/10.1186/1735-2746-10-17
Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57(5), 503–507. https://doi.org/10.1007/s00284-008-9276-8
Li, C., Li, H., Yao, T., Su, M., Ran, F., Han, B., Li, J., Lan, X., Zhang, Y., Yang, X., & Gun, S. (2019). Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresource Technology, 289(March), 121653. https://doi.org/10.1016/j.biortech.2019.121653
Liu, S., Wang, M., Yin, M., Chu, G., Xu, C., Zhang, X., Abliz, B., Tang, C., Wang, D., & Chen, S. (2022). Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil. Soil and Tillage Research, 215, 105219. https://doi.org/10.1016/j.still.2021.105219
Mao, H., Lv, Z., Sun, H., Li, R., Zhai, B., Wang, Z., Awasthi, M. K., Wang, Q., & Zhou, L. (2018). Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresource Technology, 258, 195–202. https://doi.org/10.1016/j.biortech.2018.02.082
Meena, M. D., Joshi, P. K., Narjary, B., Sheoran, P., Jat, H. S., Chinchmalatpure, A. R., Yadav, R. K., & Sharma, D. K. (2016). Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard–pearl millet cropping system. Soil Research, 54(8), 958–969. https://doi.org/10.1071/SR15342
Mohseni, M., Norouzi, H., Hamedi, J., & Roohi, A. (2013). Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. International Journal of Molecular and Cellular Medicine, 2(2), 64–71. Retrieved from http://ijmcmed.org/article-1-81-en.html
Otero-Jiménez, V., Carreño-Carreño, J. del P., Barreto-Hernandez, E., van Elsas, J. D., & Uribe-Vélez, D. (2021). Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 167, 104036. https://doi.org/10.1016/j.apsoil.2021.104036
Pepe, O., Ventorino, V., & Blaiotta, G. (2013). Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application. Waste Management, 33(7), 1616–1625. https://doi.org/10.1016/j.wasman.2013.03.025
Rasslan, M. N., Mahmoud, S. M., Mohamed, H. M., & Basha, A. A. A. (2021). Effect of rock phosphate and plant growth-promoting rhizobacteria on physical and chemical properties change of corn residues during composting. SVU-International Journal of Agricultural Sciences, 3(3), 71–84. https://doi.org/10.21608/svuijas.2021.66837.1089
Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., & Swings, J. (2003). A survey of bacteria and fungi occurring during composting and self-heating processes. Annals of Microbiology, 53(4), 349–410. Retrieved from https://www.researchgate.net/publication/228558663_A_survey_of_bacteria_and_fungi_occurring_during_composting_and_self-heating_processes
Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136–153. https://doi.org/10.1016/j.wasman.2017.08.012
Saothongnoi, V., Amkha, S., Inubushi, K., & Smakgahn, K. (2014). Effect of rice straw incorporation on soil properties and rice yield. Thai Journal of Agricultural Science, 47(1), 7–12. Retrieved from https://www.thaiscience.info/Journals/Article/TJAS/10965729.pdf
Selim, S. M., Zayed, M. S., & Atta, H. M. (2012). Evaluation of phytotoxicity of compost during composting process. Nature and Science, 10(2), 69–77. Retrieved from https://www.sciencepub.net/nature/ns1002/012_8010ns1002_69_77.pdf
Sharma, S., & Dhaliwal, S. S. (2019). Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice–wheat system. Communications in Soil Science and Plant Analysis, 50(16), 1943–1954. https://doi.org/10.1080/00103624.2019.1648489
Si, L., Xie, Y., Ma, Q., & Wu, L. (2018). The short-term effects of rice straw biochar, nitrogen and phosphorus fertilizer on rice yield and soil properties in a cold waterlogged paddy field. Sustainability, 10(2), 537. https://doi.org/10.3390/su10020537
Soon, Y. K., & Abboud, S. (1991). A comparison of some methods for soil organic carbon determination. Communications in Soil Science and Plant Analysis, 22(9–10), 943–954. https://doi.org/10.1080/00103629109368465
Sullivan, D., & Miller, R. (2001). Compost quality attributes, measurements and variability. p. 95-120. P.J. Stofella and B.A. Kahn (eds.). Compost utilization in horticultural cropping systems. Boca Raton, FL: CRC Press. Retrieved from https://www.researchgate.net/publication/345951614_Compost_Quality_Attributes_Measurements_and_Variability
Tognetti, C., Laos, F., Mazzarino, M. J., & Hernández, M. T. (2005). Composting vs. vermicomposting: A comparison of end product quality. Compost Science and Utilization, 13(1), 6–13. https://doi.org/10.1080/1065657X.2005.10702212
Tripetchkul, S., Pundee, K., Koonsrisuk, S., & Akeprathumchai, S. (2012). Co-composting of coir pith and cow manure: Initial C/N ratio vs physico-chemical changes. International Journal of Recycling of Organic Waste in Agriculture, 1(1), 1–8. https://doi.org/10.1186/2251-7715-1-15
Wahyuni, W. S., Mudjiharjati, A., & Sulistyaningsih, N. (2010). Compost extracts of vegetable wastes as biopesticide to control Cucumber Mosaic Virus. HAYATI Journal of Biosciences, 17(2), 95–100. https://doi.org/10.4308/hjb.17.2.95
Walpola, B. C., & Yoon, M.-H. (2013). In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. African Journal of Microbiology Research, 7(27), 3534–3541. Retrieved from https://academicjournals.org/journal/AJMR/article-abstract/668403F12067
Wang, W., Lai, D. Y. F., Wang, C., Pan, T., & Zeng, C. (2015). Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil and Tillage Research, 152, 8–16. https://doi.org/10.1016/j.still.2015.03.011
Wang, X., Tian, L., Li, Y., Zhong, C., & Tian, C. (2022b). Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting. Bioresource Technology, 359, 127458. https://doi.org/10.1016/j.biortech.2022.127458
Westphal, K. R., Heidelbach, S., Zeuner, E. J., Riisgaard-Jensen, M., Nielsen, M. E., Vestergaard, S. Z., Bekker, N. S., Skovmark, J., Olesen, C. K., Thomsen, K. H., Niebling, S. K., Sørensen, J. L., & Sondergaard, T. E. (2021). The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. International Journal of Food Microbiology, 347, 109171. https://doi.org/10.1016/j.ijfoodmicro.2021.109171
Wichuk, K. M., & McCartney, D. (2013). Compost stability and maturity evaluation—A literature review. Journal of Environmental Engineering and Science, 8(5), 601–620. https://doi.org/10.1139/L10-101
Wikurendra, E. A., Nurika, G., Herdiani, N., & Lukiyono, Y. T. (2022). Evaluation of the commercial bio-activator and a traditional bio-activator on compost using Takakura Method. Journal of Ecological Engineering, 23(6), 278–285. https://doi.org/10.12911/22998993/149303
Xiong, Y., Zhao, Y., Kuikui, N. I., Yue, S. H. I., & Qingfang, X. U. (2020). Characterization of ligninolytic bacteria and analysis of alkali-lignin biodegradation products. Polish Journal of Microbiology, 69(3), 339–347. https://doi.org/10.33073/pjm-2020-037
Xu, J., Jiang, Z., Li, M., & Li, Q. (2019). A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. Journal of Environmental Management, 243, 240–249. https://doi.org/10.1016/j.jenvman.2019.05.008
Yang, W., Guo, Y., Wang, X., Chen, C., Hu, Y., Cheng, L., Gu, S., & Xu, X. (2017). Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Applied Soil Ecology, 121, 214–222. https://doi.org/10.1016/j.apsoil.2017.10.005
Zebua, A. C., Guchi, H., & Sembiring, M. (2020). Isolation of non-symbiotic nitrogen-fixing bacteria on Andisol land affected by Sinabung eruption. IOP Conference Series: Earth and Environmental Science, 454(1), 012167. https://doi.org/10.1088/1755-1315/454/1/012167
Zhang, L., Jia, Y., Zhang, X., Feng, X., Wu, J., Wang, L., & Chen, G. (2016). Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting. Bioresource Technology, 209, 402–406. https://doi.org/10.1016/j.biortech.2016.03.004
Zhang, L., & Sun, X. (2017). Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresource Technology, 245, 152–161. https://doi.org/10.1016/j.biortech.2017.08.147
Zhu, H., Wang, Z. X., Luo, X. M., Song, J. X., & Huang, B. (2014). Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. Journal of Agricultural Science, 152(5), 741–748. https://doi.org/10.1017/S002185961300035X
Refbacks
- There are currently no refbacks.