Effectiveness of Endophytic Bacteria from Local Tomato Plants Against Wilt Disease Caused by Fusarium oxysporum

Ratna Umi Nurlila, Jumarddin La Fua, Muhammad Sainal Abidin, Sulaeha Sulaeha, Lodes Hadju


Fusarium wilt is a plant disease caused by Fusarium oxysporum that generates significant economic loss to crops. A method to sustainably control F. oxysporum is utilizing biological agents, such as endophytic bacteria. Therefore, this study aimed to isolate endophytic bacteria from tomato plant tissue, which could inhibit the pathogen of wilt disease (F. oxysporum). Endophytic bacteria were isolated from local tomato plants in Muna Regency, Indonesia. Morphological characteristics such as size, shape, color and height of bacterial colonies were then determined by Gram staining using potassium hydroxide (KOH). Endophytic bacterial isolates were evaluated for their ability to inhibit F. oxysporum through inhibition and hydrogen cyanide (HCN) production tests. Subsequently, analysis of variance was used to determine whether endophytic bacteria inhibited F. oxysporum growth, and if there was a significant effect, Duncan's test was conducted at 95% significance. HCN production was observed through qualitative methods. The results showed that four endophytic bacteria isolates, namely LBR I A03, SWR II B04, SDM II B05 and SWR I A02 inhibited the growth of F. oxysporum by more than 50%. It also revealed that four endophytic bacterial isolates were strong HCN producers and two were weak producers. Therefore, isolates showing antifungal activity in this study can be used as biopesticide agents to induce plant resistance to F. oxysporum.


antagonistic bacteria; biocontrol; biopesticide; endophytes; HCN production

Full Text:



Abdel-Aziz, M. S., Ghareeb, M. A., Hamed, A. A., Rashad, E. M., El-Sawy, E. R., Saad, I. M., & Ghoneem, K. M. (2021). Ethyl acetate extract of Streptomyces spp. isolated from Egyptian soil for management of Fusarium oxysporum: The causing agent of wilt disease of tomato. Biocatalysis and Agricultural Biotechnology, 37, 102185. https://doi.org/10.1016/j.bcab.2021.102185

Al Viandari, N., Wihardjaka, A., Pulunggono, H. B., & Suwardi, S. (2022). Sustainable development strategies of rainfed paddy fields in Central Java, Indonesia: A review. Caraka Tani: Journal of Sustainable Agriculture, 37(2), 275–288. https://doi.org/10.20961/carakatani.v37i2.58242

Aldinary, A. M., Morsy Abdelaziz, A., Farrag, A. A., & Attia, M. S. (2021). Biocontrol of tomato Fusarium wilt disease by a new Moringa endophytic Aspergillus isolates. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.423

Alenazi, M. M., Shafiq, M., Alsadon, A. A., Alhelal, I. M., Alhamdan, A. M., Solieman, T. H. I., Ibrahim, A. A., Shady, M. R., & Al-Selwey, W. A. (2020). Improved functional and nutritional properties of tomato fruit during cold storage. Saudi Journal of Biological Sciences, 27(6), 1467–1474. https://doi.org/10.1016/j.sjbs.2020.03.026

Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G., & Imran, A. (2020). Functional characterzation of potenstial PGPR exhibiting broad-spectrum antifungal activity. Microbiological Research, 232, 126389. Retrieved from https://www.researchgate.net/publication/337832209

Alwi, I. A. S., Tusi, A., Oktafri, O., & Warji, W. (2022). Pertumbuhan akar dan produktivitas tanaman tomat (Solanum lycopersium L.) dengan variasi ukuran media tanam hydroton. Jurnal Agricultural Biosystem Engineering, 1(2), 152–161. Retrieved from https://jurnal.fp.unila.ac.id/index.php/ABE/article/view/5980/4114

Alstrom, S., & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7, 232–238. Retrieved from https://link.springer.com/article/10.1007/BF00709654

Attia, M. S., Abdelaziz, A. M., Al-askar, A. A., & Arishi, A. A. (2022). Plant growth-promoting fungi as biocontrol tool against Fusarium wilt disease of tomato plant. Journal of Fungi, 8(8), 775. https://doi.org/10.3390/jof8080775

Aydi-Ben-Abdallah, R., Jabnoun-Khiareddine, H., & Daami-Remadi, M. (2020). Fusarium wilt biocontrol and tomato growth stimulation, using endophytic bacteria naturally associated with Solanum sodomaeum and S. bonariense plants. Egyptian Journal of Biological Pest Control, 30(1), 1–13. https://doi.org/10.1186/s41938-020-00313-1

Ayele, T. M., Gebremariam, G. D., & Patharajan, S. (2020). Isolation, identification and in vitro for the biocontrol potential of Trichoderma viride of Fusarium oxysporum f.sp. Lycopersici. The Open Agruculture Journal, 15, 10–20. https://doi.org/10.2174/1874331502115010010

Bahmani, K., Hasanzadeh, N., Harighi, B., & Marefat, A. (2021). Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiological and Molecular Plant Pathology, 116, 101692. https://doi.org/10.1016/j.pmpp.2021.101692

Bahroun, A., Jousset, A., Mrabet, M., Mhamdi, R., & Mhadhbi, H. (2021). Protists modulate Fusarium root rot suppression by beneficial bacteria. Applied Soil Ecology, 168, 104158. https://doi.org/10.1016/j.apsoil.2021.104158

Bakker, P. A. H. M., Berendsen, R. L., Pelt, J. A. Van, Vismans, G., Yu, K., Li, E., Bentum, S. Van, Poppeliers, S. W. M., Gil, J. J. S., & Zhang, H. (2020). The soil-borne identity and microbiome-assisted agriculture: Looking back to the future. Molecular plant, 13(10), 1394–1401. https://doi.org/10.1016/j.molp.2020.09.017

Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology, 173(3), 170–177. https://doi.org/10.1007/s002039900127

Card, S. D., Hume, D. E., Roodi, D., McGill, C. R., Millner, J. P., & Johnson, R. D. (2015). Beneficial endophytic microorganisms of Brassica-A review. Biological Control, 90, 102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001

Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, L., Ben, C., & Djébali, N. (2021). Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 172, 111389. https://doi.org/10.1016/j.postharvbio.2020.111389

Chowdhury, M. E. K., & Bae, H. (2018). Bacterial endophytes isolated from mountain-cultivated ginseng (Panax ginseng Mayer) have biocontrol potential against ginseng pathogens. Biological Control, 18, 1–46. https://doi.org/10.1016/j.biocontrol.2018.08.006

Çolak, N. G., Eken, N. T., Ülger, M., Frary, A., & Doğanlar, S. (2020). Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Science, 292, 110393. https://doi.org/10.1016/j.plantsci.2019.110393

Coombs, J. T., Michelsen, P. P., & Franco, C. M. M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control, 29(3), 359–366. https://doi.org/10.1016/j.biocontrol.2003.08.001

Devi, A. R., Sharma, G. D., Majumdar, P. B., & Pandey, P. (2018). A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). Biocatalysis and Agricultural Biotechnology, 16, 614–624. https://doi.org/10.1016/j.bcab.2018.10.003

Devi, N. O., Tombisana Devi, R. K., Debbarma, M., Hajong, M., & Thokchom, S. (2022). Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici. Egyptian Journal of Biological Pest Control, 32(1), 1–14. https://doi.org/10.1186/s41938-021-00499-y

Dukare, A., & Paul, S. (2021). Biological control of Fusarium wilt and growth promotion in pigeon pea (Cajanus cajan) by antagonistic rhizobacteria, displaying multiple modes of pathogen inhibition. Rhizosphere, 17, 100278. https://doi.org/10.1016/j.rhisph.2020.100278

Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235

Duong, B., Nguyen, H. X., Phan, H. V., Colella, S., Trinh, P. Q., Hoang, G. T., Nguyen, T. T., Marraccini, P., Lebrun, M., & Duponnois, R. (2021). Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 242, 126613. https://doi.org/10.1016/j.micres.2020.126613

Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 01887. https://doi.org/10.3389/fmicb.2017.01887

Gutomo, H. (2007). Pengendalian hayati Sclerotium roifsii Sacc. pada kedelai dengan Binucleare Rhizoetonia. Caraka Tani: Journal of Sustainable Agriculture, 22(2), 1–5. https://doi.org/10.20961/carakatani.v22i2.20546

Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by Fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307–319. https://doi.org/10.1038/nrmicro1129

Hadiwiyono, H., Sari, K., & Poromarto, S. H. (2020). Yields losses caused by basal plate rot (Fusarium oxysporum f.sp. cepae) in some shallot varieties. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 250–257. https://doi.org/10.20961/carakatani.v35i2.26916

Jamil, A., Musheer, N., & Kumar, M. (2021). Evaluation of biocontrol agents for management of wilt disease of tomato incited by Fusarium oxysporum f.sp. lycopersici. Archives of Phytopathology and Plant Protection, 54(19–20), 1722–1737. https://doi.org/10.1080/03235408.2021.1938353

Jie, L., Zifeng, W., Lixiang, C., Hongming, T., Patrik, I., Zide, J., & Shining, Z. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological Control, 51(3), 427–434. https://doi.org/10.1016/j.biocontrol.2009.08.002

Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects of the tomato pathogen Fusarium oxysporum f.sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Molecular Plant-Microbe Interactions, 19(10), 1121–1126. https://doi.org/10.1094/MPMI-19-1121

Khalil, Fierro-Coronado, R. A., Peñuelas-Rubio, O., Villa-Lerma, A. G., Plascencia-Jatomea, R., Félix-Gastélum, R., & Maldonado-Mendoza, I. E. (2021). Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi Journal of Biological Sciences, 28(12), 7460–7471. https://doi.org/10.1016/j.sjbs.2021.08.043

Kollakkodan, N., Anith, K. N., & Nysanth, N. S. (2021). Endophytic bacteria from Piper colubrinum suppress Phytophthora capsici infection in black pepper (Piper nigrum L.) and improve plant growth in the nursery. Archives of Phytopathology and Plant Protection, 54(1–2), 86–108. https://doi.org/10.1080/03235408.2020.1818493

Kong, W. L., Li, P. S., Wu, X. Q., Wu, T. Y., & Sun, X. R. (2020). Forest tree associated bacterial diffusible and volatile organic compounds against various phytopathogenic fungi. Microorganisms, 8(4), 1–12. https://doi.org/10.3390/microorganisms8040590

Kumar, V., Jain, L., Jain, S. K., Chaturvedi, S., & Kaushal, P. (2020). Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. South African Journal of Botany, 134, 50–63. https://doi.org/10.1016/j.sajb.2020.02.017

La Fua, J., Sabaruddin, L., Bande, L. O. S., Leomo, S., Sutariati, G. A. K., Khaeruni, A., Safuan, L. O., Gusnawaty, H. S., Rakian, T. C., Muhidin, Iswandi, M., & Nurlila, R. U. (2021). Isolation of drought-tolerant endophyte bacteria from local tomato plants. Pakistan Journal of Biological Sciences, 24(10), 1055–1062. https://doi.org/10.3923/pjbs.2021.1055.1062

Li, C., Cheng, P., Zheng, L., Li, Y., Chen, Y., Wen, S., & Yu, G. (2021). Comparative genomics analysis of two banana Fusarium wilt biocontrol endophytes Bacillus subtilis R31 and TR21 provides insights into their differences on phytobeneficial trait. Genomics, 113(3), 900–909. https://doi.org/10.1016/j.ygeno.2021.02.006

Listyowati, C., Indradewa, D., & Irwan, S. N. R. (2022). Study on weeds abundance on rice fields in mycorrhizal inoculation and different planting methods. Caraka Tani: Journal of Sustainable Agriculture, 37(2), 259-274. https://doi.org/10.20961/carakatani.v37i2.53131

Liu, Y. Te, Yang, I. C., & Lin, N. C. (2020). Evaluation of biocontrol potential for Fusarium yellows of celery by antagonistic and gallic acid-degrading bacteria. Biological Control, 146, 104268. https://doi.org/10.1016/j.biocontrol.2020.104268

Liu, X., & Zhang, Y. (2021). Exploring the communities of bacteria, fungi and ammonia oxidizers in rhizosphere of Fusarium-diseased greenhouse cucumber. Applied Soil Ecology, 161, 103832. https://doi.org/10.1016/j.apsoil.2020.103832

Másmela-Mendoza, J. E., & Moreno-Velandia, C. A. (2022). Bacillus velezensis supernatant mitigates tomato Fusarium wilt and affects the functional microbial structure in the rhizosphere in a concentration-dependent manner. Rhizosphere, 21, 100475. https://doi.org/10.1016/j.rhisph.2022.100475

Mon, Y. Y., Bidabadi, S. S., Oo, K. S., & Zheng, S. J. (2021). The antagonistic mechanism of rhizosphere microbes and endophytes on the interaction between banana and Fusarium oxysporum f. sp. cubense. Physiological and Molecular Plant Pathology, 116, 101733. https://doi.org/10.1016/j.pmpp.2021.101733

Munakata, Y., Gavira, C., Genestier, J., Bourgaud, F., Hehn, A., & Slezack-Deschaumes, S. (2021). Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiological Research, 243, 126650. https://doi.org/10.1016/j.micres.2020.126650

Munif, A., Hallmann, J., & Sikora, R. A. (2012). Isolation of endophytic bacteria from tomato and their biocontrol activities against fungal diseases. Microbiology Indonesia, 6(4), 148–156. https://doi.org/10.5454/mi.6.4.2

Pal, G., Kumar, K., Verma, A., & Verma, S. K. (2022). Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiological Research, 255, 126926. https://doi.org/10.1016/j.micres.2021.126926

Patel, R., Mehta, K., Prajapati, J., Shukla, A., & Parmar, P. (2022). An anecdote of mechanics for Fusarium biocontrol by plant growth promoting microbes. Biological Control, 174, 105012. https://doi.org/10.1016/j.biocontrol.2022.105012

Pathak, E., Sanjyal, A., Regmi, C. R., Paudel, S., & Shrestha, A. (2021). Screening of potential plant growth promoting properties of Bacillus species isolated from different regions of Nepal. Nepal Journal of Biotechnology, 9(1), 79–84. https://doi.org/10.3126/njb.v9i1.38672

Prasada, I. Y., & Masyhuri, M. (2020). Factors affecting farmers’ perception toward agricultural land sustainability in peri-urban areas of Pekalongan City. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 203–212. https://doi.org/10.20961/carakatani.v35i2.31918

Prasetya, I. A. W., Yuni, S. R., & Guntur, T. (2018). Isolasi dan karakterisasi bakteri kitinolitik endofit bawang merah (Allium ascalonicum) serta potensinya dalam menghambat pertumbuhan Fusarium oxysporum. LenteraBio: Berkala Ilmiah Biologi, 7(1), 1–8. Retrieved from https://jurnalmahasiswa.unesa.ac.id/index.php/lenterabio/article/view/28335

Ramette, A., Frapolli, M., Défago, G., & Moënne-Loccoz, Y. (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Molecular Plant-Microbe Interactions, 16(6), 525–535. https://doi.org/10.1094/MPMI.2003.16.6.525

Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., & Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control, 144, 104222. https://doi.org/10.1016/j.biocontrol.2020.104222

Santi, S., Belinda, S., & Rianty, H. (2019). Identifikasi iklim mikro dan kenyaman termal ruang terbuka hijau di Kendari. NALARs, 18(1), 23–34. https://doi.org/10.24853/nalars.18.1.23-34

Sehrawat, A., Sindhu, S. S., & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15–38. https://doi.org/10.1016/S1002-0160(21)60058-9

Singh, V. K., Singh, A. K., Singh, P. P., & Kumar, A. (2018). Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems and Environment, 267, 129–140. https://doi.org/10.1016/j.agee.2018.08.020

Soesanto, L., Mugiastuti, E., & Manan, A. (2020). The potensial of Fusarium sp. and Chaetomium sp. as biological control agents of five broad-leaf weeds. Caraka Tani: Journal of Sustainable Agriculture, 35(2), 299–307. https://doi.org/10.20961/carakatani.v35i2.35713

Taheri, E., Tarighi, S., & Taheri, P. (2022). Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum. Biological Control, 174, 105031. https://doi.org/10.1016/j.biocontrol.2022.105031

Validov, S., Kamilova, F., Qi, S., Stephan, D., Wang, J. J., Makarova, N., & Lugtenberg, B. (2007). Selection of bacteria able to control Fusarium oxysporum f.sp. radicis-lycopersici in stonewool substrate. Journal of Applied Microbiology, 102(2), 461–471. https://doi.org/10.1111/j.1365-2672.2006.03083.x

Verma, S. K., & White, J. F. (2018). Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). Journal of Applied Microbiology, 124(3), 764–778. https://doi.org/10.1111/jam.13673

Vinchira-Villarraga, D. M., Castellanos, L., Moreno-Sarmiento, N., Suarez-Moreno, Z. R., & Ramos, F. A. (2021). Antifungal activity of marine-derived Paenibacillus sp. PNM200 against Fusarium oxysporum f.sp. lycopersici, the causal agent of tomato vascular wilt. Biological Control, 154, 104501. https://doi.org/10.1016/j.biocontrol.2020.104501

Wiratno, Syakir, M., Sucipto, I., & Pradana, A. P. (2019). Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita. Biodiversitas, 20(3), 682–687. https://doi.org/10.13057/biodiv/d200310

Yadav, A. S., Yadav, S., & Singh, R. (2018). Screening of fungicides in vitro and seed treatment against fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris. Journal of Pharmacognosy and Phytochemistry, 7(7), 595–599. Retrieved from https://www.phytojournal.com/archives/2018/vol7issue3/PartAM/7-3-314-662.pdf

Yanti, Y., Warnita, Reflin, & Busniah, M. (2018). Indigenous endophyte bacteria ability to control Ralstonia and Fusarium wilt disease on chili pepper. Biodiversitas, 19(4), 1532–1538. https://doi.org/10.13057/biodiv/d190446

Zia, M. A., Riaz, R., Batool, A., Yasmin, H., Nosheen, A., Naz, R., & Hassan, M. N. (2021). Glucanolytic rhizobacteria associated with wheat- maize cropping system suppress the Fusarium wilt of tomato (Lycopersicum esculentum L). Scientia Horticulturae, 287, 110275. https://doi.org/10.1016/j.scienta.2021.110275


  • There are currently no refbacks.