Identifying Drought-Tolerant Impatiens Genotypes by Using Water Stress Treatment
Abstract
Keywords
Full Text:
PDFReferences
Antonic, D. D., Suboti, A. R., Dragicevic, M. B., Pantelic, D., Milosevic, S. M., Simonovic, A. D., & Momcilovic, I. (2020). Effects of exogenous salicylic acid on drought response and characterization of dehydrins in Impatiens walleriana. Plants, 9(1589), 1–22. https://doi.org/10.3390/PLANTS9111589
Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., & Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233. https://doi.org/10.1016/j.sajb.2016.04.002
Bates, L. S. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybeans. I. evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), 933–937. https://doi.org/10.2135/cropsci1984.0011183x002400050026x
Chylinsi, W. K., Lukaszewska, A. J., & Kutnik, K. (2007). Drought response of two bedding plants´. Acta Physiol Plant, 29, 399–406. https://doi.org/10.1007/s11738-007-0073-y
Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., & De Pascale, S. (2014). The influence of deficit irrigation on growth, ornamental quality, and water use efficiency of three potted Bougainvillea genotypes grown in two shapes. HortScience, 49(10), 1284–1291. https://doi.org/10.21273/hortsci.49.10.1284
Čuda, J., Skálová, H., Janovský, Z., & Pyšek, P. (2016). Juvenile biological traits of Impatiens species are more strongly associated with naturalization in temperate climate than their adult traits. Perspectives in Plant Ecology, Evolution and Systematics, 20, 1–10. https://doi.org/10.1016/j.ppees.2016.02.007
Čuda, J., Vítková, M., Albrechtová, M., Guo, W. Y., Barney, J. N., & Pyšek, P. (2017). Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biological Invasions, 19(10), 3051–3066. https://doi.org/10.1007/s10530-017-1508-z
Descamps, C., Boubnan, N., Jacquemart, A.-L., & Quinet, M. (2021). Growing and flowering in a changing climate : Effects of higher temperatures and drought stress on the bee-pollinated. Plants, 10(988), 1–15. https://doi.org/10.3390/plants10050988
Dikshit, A., & Girjesh, K. (2007). Morphogenetic analysis of colchitetraploids in Impatiens balsamina L. Caryologia, 60(3), 199–202. https://doi.org/10.1080/00087114.2007.10797937
Dreesen, D. R., & Langhans, R. W. (1992). Temperature effects on growth of Impatiens plug seedlings in controlled environments. Journal of the American Society for Horticultural Science, 117(2), 209–215. https://doi.org/10.21273/jashs.117.2.209
Ðurić, M., Subotić, A., Prokić, L., Trifunović-Momčilov, M., Cingel, A., Vujičić, M., & Milošević, S. (2020). Morpho-physiological and molecular evaluation of drought and recovery in Impatiens walleriana grown ex vitro. Plants, 9(11), 1–22. https://doi.org/10.3390/plants9111559
Fernandez, G. C. J. (1991). Analysis of genotype × environment interaction by stability estimates. HortScience, 26(8), 947–950. https://doi.org/10.21273/hortsci.26.8.947
Gaur, A., Gaur, A., & Adholeya, A. (2000). Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Scientia Horticulturae, 84(1–2), 151–162. https://doi.org/10.1016/S0304-4238(99)00105-3
Giordano, M., Petropoulos, S. A., Cirillo, C., & Rouphael, Y. (2021). Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae, 7(5), 1–23. https://doi.org/10.3390/horticulturae7050107
Gou, Y., Guo, S., Wang, G., & Liu, C. (2020). Effects of short-term heat stress on the growth and development of Bradysia cellarum and Bradysia impatiens. Journal of Applied Entomology, 144(4), 315–321. https://doi.org/10.1111/jen.12733
Gulser, F., & Cig, A. (2021). Ornamental plants resistant to drought stress in landscape areas. The 5th Symposium on Euro Asian Biodiversity, August, 139–146. Retrieved from https://www.researchgate.net/publication/353831650_Ornamental_Plants_Resistant_to_Drought_Stress_in_Landscape_Areas
Hassemer, G., & Pereira dos Santos, A. (2017). New records of naturalised Impatiens (Balsaminaceae) in Brazil. Magistra, Cruz Das Almas, 29(1), 98–105. Retrieved from https://www.researchgate.net/publication/323639446_New_records_of_naturalised_Impatiens_Balsaminaceae_in_Brazil
Heidari, S., Ghazvini, R. F., Zvareh, M., & Kafi, M. (2019). Flowering, physiological and biochemical responses of two Echinacea species to drought stress. Agriculturae Conspectus Scientificus, 84(3), 263–270. Retrieved from https://acs.agr.hr/acs/index.php/acs/article/view/1513
Hendriyani, I. S., & Setiari, N. (2009). Kandungan klorofil dan pertumbuhan kacang panjang (Vigna sinensis) pada tingkat penyediaan air yang berbeda. Jurnal Sains & Matematika, 17(3), 145–150. Retrieved from https://core.ac.uk/download/11703559.pdf
Heschel, M. S., & Riginos, C. (2005). Mechanisms of selection for drought stress. American Journal of Botany, 92(1), 37–44. https://doi.org/10.3732/ajb.92.1.37
Kaczperski, M., & Carlson, W. H. (1989). Producing Impatiens. Michigan, United States: Cooperative Extension Service, Michigan State University. Retrieved from https://archive.lib.msu.edu/DMC/Ag.%20Ext.%202007-Chelsie/PDF/e1580-1989-rev1.pdf
Langkamp, T., Mibus, H., & Spinarova, S. (2015). Morphological and physiological adaptations to light stress in different impatiens new Guinea hybrids. Acta Horticulturae, 1087, 155–160. https://doi.org/10.17660/ActaHortic.2015.1087.18
Liu, W., Wu, J., Lian, J., Zhang, X., Zeb, A., Zhou, Q., & Sun, Y. (2020). Potential use of Impatiens balsamina L. for bioremediation of lead and polychlorinated biphenyl contaminated soils. Land Degradation and Development, 32(13), 3773–3784. https://doi.org/10.1002/ldr.3857
Liu, Y., Xu, W., Wang, Y., Hao, W., Zhou, Q., & Liu, J. (2021). Growth responses and accumulation characteristics of three ornamental plants to Sn contamination in soil. Agriculture, 11(3), 205. https://doi.org/10.3390/agriculture11030205
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability (Switzerland), 13(3), 1–21. https://doi.org/10.3390/su13031318
Nurul, A. H., Arina H, N., Bhore, S. J., & Shah, F. (2010). Total phenolic content and RAPD analysis of Garden Balsam (Impatiens balsamina L.) accessions from Malaysia. Middle East Journal of Scientific Research, 5(6), 454–463. Retrieved from https://www.researchgate.net/profile/Nurul-Husin/publication/268872948_Total_Phenolic_Content_and_RAPD_Analysis_of_Garden_Balsam_Impatiens_balsamina_L_Accessions_from_Malaysia/links/547aa2dd0cf205d1687fb06b/Total-Phenolic-Content-and-RAPD-Analysis-of-Garden-Balsam-Impatiens-balsamina-L-Accessions-from-Malaysia.pdf
Pareek, A., Dhankher, O. P., & Foyer, C. H. (2020). Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 71(2), 451–456. https://doi.org/10.1093/jxb/erz518
Quinet, M., Descamps, C., Coster, Q., Lutts, S., International, S., & Sciences, P. (2015). Tolerance to water stress and shade in the invasive Impatiens parviflora. International Journal of Plant Sciences, 176(9), 1–12. https://doi.org/10.1086/683276
Riaz, A., Younis, A., Taj, A. R., Karim, A., Tariq, U., Munir, S., & Riaz, S. (2013). Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.). Pakistan Journal of Botany, 45(S1), 123–131. Retrieved from https://www.researchgate.net/profile/Shoaib-Munir-2/publication/259484411_Effect_of_drought_stress_on_growth_and_flowering_of_marigold_Tagetes_erecta_L/links/00b7d52c29477321ec000000/Effect-of-drought-stress-on-growth-and-flowering-of-marigold-Tagetes-erecta-L.pdf
Safari, M., Mousavi-Fard, S., Rezaei Nejad, A., Sorkheh, K., & Sofo, A. (2022). Exogenous salicylic acid positively affects morpho-physiological and molecular responses of Impatiens walleriana plants grown under drought stress. International Journal of Environmental Science and Technology, 19(2), 969–984. https://doi.org/10.1007/s13762-020-03092-2
Sakya, A. T., Sulistyaningsih, E., Purwanto, B. H., & Indradewa, D. (2020). Drought tolerant indices of lowland tomato cultivars. Indonesian Journal of Agricultural Science, 21(2), 59–69. Retrieved from http://repository.pertanian.go.id/handle/123456789/13323
Savé, R. (2009). What is stress and how to deal with it in ornamental plants? Acta Horticulturae, 813, 241–254. https://doi.org/10.17660/ActaHortic.2009.813.31
Savvides, A., Fanourakis, D., & Van Ieperen, W. (2012). Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany, 63(3), 1135–1143. https://doi.org/10.1093/jxb/err348
Schmitz, U., & Dericks, G. (2010). Spread of alien invasive Impatiens balfourii in Europe and its temperature, light and soil moisture demands. Flora, 205(11), 772–776. https://doi.org/10.1016/j.flora.2009.12.037
Smith, B. R., Fisher, P. R., & Argo, W. R. (2004). Growth and pigment content of container-grown impatiens and petunia in relation to root substrate pH and applied micronutrient concentration. HortScience, 39(6), 1421–1425. https://doi.org/10.21273/hortsci.39.6.1421
Soehendi, R., Kartikaningrum, S., Wegadara, M., Ratule, M. T., Thamrin, M., & Marwoto, B. (2022). Interspecific hybridization of Impatiens sp. Acta Horticulturae, 1334, 37–45. https://doi.org/10.17660/ActaHortic.2022.1334.5
Spiegelhalder, R. P., & Raissig, M. T. (2021). Morphology made for movement: Formation of diverse stomatal guard cells. Current Opinion in Plant Biology, 63, 102090. https://doi.org/10.1016/j.pbi.2021.102090
Stephens, L. C. (1998). Formation of unreduced pollen by an Impatiens hawkeri x platypetala interspecific hybrid. Hereditas, 128(3), 251–255. https://doi.org/10.1111/j.1601-5223.1998.00251.x
Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016). Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7, 645. https://doi.org/10.3389/fpls.2016.00645
Toscano, S., Ferrante, A., & Romano, D. (2019). Response of mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 1–20. https://doi.org/10.3390/horticulturae5010006
Toscano, S., Scuderi, D., Giuffrida, F., & Romano, D. (2014). Responses of Mediterranean ornamental shrubs to drought stress and recovery. Scientia Horticulturae, 178, 145–153. https://doi.org/10.1016/j.scienta.2014.08.014
Tribulato, A., Toscano, S., Di Lorenzo, V., & Romano, D. (2019). Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean area. Agronomy, 9(7), 1–19. https://doi.org/10.3390/agronomy9070381
Yu, S.-X., Janssens, S. B., Zhu, X., Liden, M., Gao, T.-G., & Wang, W. (2015). Phylogeny of Impatiens (Balsaminaceae): Integrating molecular and morphological evidence into a new classification. Cladistics, 32(2), 179–197. https://doi.org/10.1111/cla.12119
Zhang, D., Wei, J., Zhou, M., Li, Y., Li, X. Y., Wen, Y. H., Huang, M. J., & Huang, H. Q. (2021). Efficient plant regeneration system for New Guinea Impatiens (Impatiens hawkeri W. Bull) CV.‘Violet’ and ‘Scarlet Bronze Leaf’. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 549–561. https://doi.org/10.1007/s11240-022-02282-9
Zuccarini, P., Galindo, A., Torrecillas, A., Pardossi, A., & Clothier, B. (2020). Hydraulic relations and water use of mediterranean ornamental shrubs in containers. Journal of Horticultural Research, 28(1), 49–56. https://doi.org/10.2478/johr-2020-0009
Refbacks
- There are currently no refbacks.