Identifying Drought-Tolerant Impatiens Genotypes by Using Water Stress Treatment

Herni Shintiavira, Ardian Elonard Purba, Suskandari Kartikaningrum, Atsushi Koseki

Abstract

The drought-tolerant Impatiens genotypes are known for their resistance to limited or stressed water. The study aimed to identify drought-tolerance of Impatiens clones. The experiment used a split-plot design replicated three times, with the water stress treatment as the main plot and Impatiens clones as subplots. The main plot consists of 100% and 60% of field capacity. The subplots consist of five Impatiens clones, 17.12; 12; 33.3; 40 B and Impatiens cv of Impala Agrihorti as a control. The results showed that 60% field capacity decreased morphological and physiological traits. Still, the drought-tolerant clones were less affected by the stress and produced more flowers than the others. The most drought-tolerant Impatiens was clone 12. The mechanism of drought tolerance Impatiens was by stomatal closure when the humidity in the growing medium was decreasing. The stomata closure did not significantly reduce the fresh and dry weight in drought-tolerant plants, but it affected the delay in flower initiation. The plant accumulated assimilate for plant height and diameter growth but is not sufficient for generative initiation. They assimilate in the vegetative phase and can be used as sources for flower formation, which show no significant decrease in the number of flowers. The study implies that the drought-tolerant Impatiens clones can be used as genotype sources for drought-tolerant or can be released as new varieties of Impatiens for landscape plants with the superiority in having drought tolerant.

Keywords

abiotic stress; morpho-physiological characters; stress tolerance index

Full Text:

PDF

References

Antonic, D. D., Suboti, A. R., Dragicevic, M. B., Pantelic, D., Milosevic, S. M., Simonovic, A. D., & Momcilovic, I. (2020). Effects of exogenous salicylic acid on drought response and characterization of dehydrins in Impatiens walleriana. Plants, 9(1589), 1–22. https://doi.org/10.3390/PLANTS9111589

Antonić, D., Milošević, S., Cingel, A., Lojić, M., Trifunović-Momčilov, M., Petrić, M., Subotić, A., & Simonović, A. (2016). Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. South African Journal of Botany, 105, 226–233. https://doi.org/10.1016/j.sajb.2016.04.002

Bates, L. S. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060

Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybeans. I. evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), 933–937. https://doi.org/10.2135/cropsci1984.0011183x002400050026x

Chylinsi, W. K., Lukaszewska, A. J., & Kutnik, K. (2007). Drought response of two bedding plants´. Acta Physiol Plant, 29, 399–406. https://doi.org/10.1007/s11738-007-0073-y

Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., & De Pascale, S. (2014). The influence of deficit irrigation on growth, ornamental quality, and water use efficiency of three potted Bougainvillea genotypes grown in two shapes. HortScience, 49(10), 1284–1291. https://doi.org/10.21273/hortsci.49.10.1284

Čuda, J., Skálová, H., Janovský, Z., & Pyšek, P. (2016). Juvenile biological traits of Impatiens species are more strongly associated with naturalization in temperate climate than their adult traits. Perspectives in Plant Ecology, Evolution and Systematics, 20, 1–10. https://doi.org/10.1016/j.ppees.2016.02.007

Čuda, J., Vítková, M., Albrechtová, M., Guo, W. Y., Barney, J. N., & Pyšek, P. (2017). Invasive herb Impatiens glandulifera has minimal impact on multiple components of temperate forest ecosystem function. Biological Invasions, 19(10), 3051–3066. https://doi.org/10.1007/s10530-017-1508-z

Descamps, C., Boubnan, N., Jacquemart, A.-L., & Quinet, M. (2021). Growing and flowering in a changing climate : Effects of higher temperatures and drought stress on the bee-pollinated. Plants, 10(988), 1–15. https://doi.org/10.3390/plants10050988

Dikshit, A., & Girjesh, K. (2007). Morphogenetic analysis of colchitetraploids in Impatiens balsamina L. Caryologia, 60(3), 199–202. https://doi.org/10.1080/00087114.2007.10797937

Dreesen, D. R., & Langhans, R. W. (1992). Temperature effects on growth of Impatiens plug seedlings in controlled environments. Journal of the American Society for Horticultural Science, 117(2), 209–215. https://doi.org/10.21273/jashs.117.2.209

Ðurić, M., Subotić, A., Prokić, L., Trifunović-Momčilov, M., Cingel, A., Vujičić, M., & Milošević, S. (2020). Morpho-physiological and molecular evaluation of drought and recovery in Impatiens walleriana grown ex vitro. Plants, 9(11), 1–22. https://doi.org/10.3390/plants9111559

Fernandez, G. C. J. (1991). Analysis of genotype × environment interaction by stability estimates. HortScience, 26(8), 947–950. https://doi.org/10.21273/hortsci.26.8.947

Gaur, A., Gaur, A., & Adholeya, A. (2000). Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Scientia Horticulturae, 84(1–2), 151–162. https://doi.org/10.1016/S0304-4238(99)00105-3

Giordano, M., Petropoulos, S. A., Cirillo, C., & Rouphael, Y. (2021). Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae, 7(5), 1–23. https://doi.org/10.3390/horticulturae7050107

Gou, Y., Guo, S., Wang, G., & Liu, C. (2020). Effects of short-term heat stress on the growth and development of Bradysia cellarum and Bradysia impatiens. Journal of Applied Entomology, 144(4), 315–321. https://doi.org/10.1111/jen.12733

Gulser, F., & Cig, A. (2021). Ornamental plants resistant to drought stress in landscape areas. The 5th Symposium on Euro Asian Biodiversity, August, 139–146. Retrieved from https://www.researchgate.net/publication/353831650_Ornamental_Plants_Resistant_to_Drought_Stress_in_Landscape_Areas

Hassemer, G., & Pereira dos Santos, A. (2017). New records of naturalised Impatiens (Balsaminaceae) in Brazil. Magistra, Cruz Das Almas, 29(1), 98–105. Retrieved from https://www.researchgate.net/publication/323639446_New_records_of_naturalised_Impatiens_Balsaminaceae_in_Brazil

Heidari, S., Ghazvini, R. F., Zvareh, M., & Kafi, M. (2019). Flowering, physiological and biochemical responses of two Echinacea species to drought stress. Agriculturae Conspectus Scientificus, 84(3), 263–270. Retrieved from https://acs.agr.hr/acs/index.php/acs/article/view/1513

Hendriyani, I. S., & Setiari, N. (2009). Kandungan klorofil dan pertumbuhan kacang panjang (Vigna sinensis) pada tingkat penyediaan air yang berbeda. Jurnal Sains & Matematika, 17(3), 145–150. Retrieved from https://core.ac.uk/download/11703559.pdf

Heschel, M. S., & Riginos, C. (2005). Mechanisms of selection for drought stress. American Journal of Botany, 92(1), 37–44. https://doi.org/10.3732/ajb.92.1.37

Kaczperski, M., & Carlson, W. H. (1989). Producing Impatiens. Michigan, United States: Cooperative Extension Service, Michigan State University. Retrieved from https://archive.lib.msu.edu/DMC/Ag.%20Ext.%202007-Chelsie/PDF/e1580-1989-rev1.pdf

Langkamp, T., Mibus, H., & Spinarova, S. (2015). Morphological and physiological adaptations to light stress in different impatiens new Guinea hybrids. Acta Horticulturae, 1087, 155–160. https://doi.org/10.17660/ActaHortic.2015.1087.18

Liu, W., Wu, J., Lian, J., Zhang, X., Zeb, A., Zhou, Q., & Sun, Y. (2020). Potential use of Impatiens balsamina L. for bioremediation of lead and polychlorinated biphenyl contaminated soils. Land Degradation and Development, 32(13), 3773–3784. https://doi.org/10.1002/ldr.3857

Liu, Y., Xu, W., Wang, Y., Hao, W., Zhou, Q., & Liu, J. (2021). Growth responses and accumulation characteristics of three ornamental plants to Sn contamination in soil. Agriculture, 11(3), 205. https://doi.org/10.3390/agriculture11030205

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability (Switzerland), 13(3), 1–21. https://doi.org/10.3390/su13031318

Nurul, A. H., Arina H, N., Bhore, S. J., & Shah, F. (2010). Total phenolic content and RAPD analysis of Garden Balsam (Impatiens balsamina L.) accessions from Malaysia. Middle East Journal of Scientific Research, 5(6), 454–463. Retrieved from https://www.researchgate.net/profile/Nurul-Husin/publication/268872948_Total_Phenolic_Content_and_RAPD_Analysis_of_Garden_Balsam_Impatiens_balsamina_L_Accessions_from_Malaysia/links/547aa2dd0cf205d1687fb06b/Total-Phenolic-Content-and-RAPD-Analysis-of-Garden-Balsam-Impatiens-balsamina-L-Accessions-from-Malaysia.pdf

Pareek, A., Dhankher, O. P., & Foyer, C. H. (2020). Mitigating the impact of climate change on plant productivity and ecosystem sustainability. Journal of Experimental Botany, 71(2), 451–456. https://doi.org/10.1093/jxb/erz518

Quinet, M., Descamps, C., Coster, Q., Lutts, S., International, S., & Sciences, P. (2015). Tolerance to water stress and shade in the invasive Impatiens parviflora. International Journal of Plant Sciences, 176(9), 1–12. https://doi.org/10.1086/683276

Riaz, A., Younis, A., Taj, A. R., Karim, A., Tariq, U., Munir, S., & Riaz, S. (2013). Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.). Pakistan Journal of Botany, 45(S1), 123–131. Retrieved from https://www.researchgate.net/profile/Shoaib-Munir-2/publication/259484411_Effect_of_drought_stress_on_growth_and_flowering_of_marigold_Tagetes_erecta_L/links/00b7d52c29477321ec000000/Effect-of-drought-stress-on-growth-and-flowering-of-marigold-Tagetes-erecta-L.pdf

Safari, M., Mousavi-Fard, S., Rezaei Nejad, A., Sorkheh, K., & Sofo, A. (2022). Exogenous salicylic acid positively affects morpho-physiological and molecular responses of Impatiens walleriana plants grown under drought stress. International Journal of Environmental Science and Technology, 19(2), 969–984. https://doi.org/10.1007/s13762-020-03092-2

Sakya, A. T., Sulistyaningsih, E., Purwanto, B. H., & Indradewa, D. (2020). Drought tolerant indices of lowland tomato cultivars. Indonesian Journal of Agricultural Science, 21(2), 59–69. Retrieved from http://repository.pertanian.go.id/handle/123456789/13323

Savé, R. (2009). What is stress and how to deal with it in ornamental plants? Acta Horticulturae, 813, 241–254. https://doi.org/10.17660/ActaHortic.2009.813.31

Savvides, A., Fanourakis, D., & Van Ieperen, W. (2012). Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany, 63(3), 1135–1143. https://doi.org/10.1093/jxb/err348

Schmitz, U., & Dericks, G. (2010). Spread of alien invasive Impatiens balfourii in Europe and its temperature, light and soil moisture demands. Flora, 205(11), 772–776. https://doi.org/10.1016/j.flora.2009.12.037

Smith, B. R., Fisher, P. R., & Argo, W. R. (2004). Growth and pigment content of container-grown impatiens and petunia in relation to root substrate pH and applied micronutrient concentration. HortScience, 39(6), 1421–1425. https://doi.org/10.21273/hortsci.39.6.1421

Soehendi, R., Kartikaningrum, S., Wegadara, M., Ratule, M. T., Thamrin, M., & Marwoto, B. (2022). Interspecific hybridization of Impatiens sp. Acta Horticulturae, 1334, 37–45. https://doi.org/10.17660/ActaHortic.2022.1334.5

Spiegelhalder, R. P., & Raissig, M. T. (2021). Morphology made for movement: Formation of diverse stomatal guard cells. Current Opinion in Plant Biology, 63, 102090. https://doi.org/10.1016/j.pbi.2021.102090

Stephens, L. C. (1998). Formation of unreduced pollen by an Impatiens hawkeri x platypetala interspecific hybrid. Hereditas, 128(3), 251–255. https://doi.org/10.1111/j.1601-5223.1998.00251.x

Toscano, S., Farieri, E., Ferrante, A., & Romano, D. (2016). Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science, 7, 645. https://doi.org/10.3389/fpls.2016.00645

Toscano, S., Ferrante, A., & Romano, D. (2019). Response of mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 1–20. https://doi.org/10.3390/horticulturae5010006

Toscano, S., Scuderi, D., Giuffrida, F., & Romano, D. (2014). Responses of Mediterranean ornamental shrubs to drought stress and recovery. Scientia Horticulturae, 178, 145–153. https://doi.org/10.1016/j.scienta.2014.08.014

Tribulato, A., Toscano, S., Di Lorenzo, V., & Romano, D. (2019). Effects of water stress on gas exchange, water relations and leaf structure in two ornamental shrubs in the Mediterranean area. Agronomy, 9(7), 1–19. https://doi.org/10.3390/agronomy9070381

Yu, S.-X., Janssens, S. B., Zhu, X., Liden, M., Gao, T.-G., & Wang, W. (2015). Phylogeny of Impatiens (Balsaminaceae): Integrating molecular and morphological evidence into a new classification. Cladistics, 32(2), 179–197. https://doi.org/10.1111/cla.12119

Zhang, D., Wei, J., Zhou, M., Li, Y., Li, X. Y., Wen, Y. H., Huang, M. J., & Huang, H. Q. (2021). Efficient plant regeneration system for New Guinea Impatiens (Impatiens hawkeri W. Bull) CV.‘Violet’ and ‘Scarlet Bronze Leaf’. Plant Cell, Tissue and Organ Culture (PCTOC), 149, 549–561. https://doi.org/10.1007/s11240-022-02282-9

Zuccarini, P., Galindo, A., Torrecillas, A., Pardossi, A., & Clothier, B. (2020). Hydraulic relations and water use of mediterranean ornamental shrubs in containers. Journal of Horticultural Research, 28(1), 49–56. https://doi.org/10.2478/johr-2020-0009

Refbacks

  • There are currently no refbacks.