Improving Agarwood (Aquilaria malaccensis Lamk.) Plantlet Formation Using Various Types and Concentrations of Auxins
Abstract
Aquilaria malaccensis Lamk. is one of the most widespread agarwood-producing plants that face extinction due to overexploitation. Agarwood propagation using in vitro culture techniques is capable of producing large quantities of plants in a shorter time and free from pests and diseases. Therefore, this study was conducted to analyze the effect of auxins type and concentration on agarwood plantlet formation using a split-plot design. The main plot was the type of auxin which included IAA, IBA and NAA, while the subplot was the concentration used which consisted of 0; 5; 10; 15 and 20 µM. The variable observed was agarwood plantlet formation with parameters measured including the number of shoots and leaves, plant height, and number of roots. The results showed that the formation of agarwood plantlets was controlled by the type, concentration, and interaction between the type and concentration of auxin. Furthermore, explants cultured on Murashige Skoog (MS) medium supplemented with 10 µM IBA produced the highest number of shoots (3.39 shoots explant-1) and leaves (7.25 leaves explants-1), while the addition of 10 uM NAA resulted in the highest number of roots (2.52 roots explant-1). This is the first time a study is conducted to evaluate the effect of type and concentration of auxins on agarwood plantlet formation. The production of high-quality shoots and plantlets increased agarwood germplasm availability to prevent extinction and support sustainable production.
Keywords
Full Text:
PDFReferences
Admojo, L., & Prasetyo, N. E. (2018). Optimasi perlakuan eksplan pada kultur organ vegetatif tanaman karet (Hevea brasiliensis Muell. Arg.) klon Pb 330. Warta Perkaretan, 37(2), 61–74. https://doi.org/10.22302/ppk.wp.v37i2.581
Agulló-Antón, M. Á., Sánchez-Bravo, J., Acosta, M., & Druege, U. (2011). Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? Journal of Plant Growth Regulation, 30, 100–113. https://doi.org/10.1007/s00344-010-9174-8
Aloni R. (2010). The induction of vascular tissues by auxin. In: Davies P.J. (eds) Plant Hormones. Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-2686-7_22
Arab, M. M., Yadollahi, A., Eftekhari, M., Ahmadi, H., Akbari, M., & Khorami, S. S. (2018). Modeling and optimizing a new culture medium for in vitro rooting of G×N15 prunus rootstock using artificial neural network-genetic algorithm. Scientific Reports, 8, 9977. https://doi.org/10.1038/s41598-018-27858-4
Arhvitasari, A., Muslimin, M., Waeniyanti, W., & Wardah, W. (2019). Organogenesis tanaman gaharu (Aquilaria malaccensis Lamk) pada berbagai konsentrasi zat pengatur tumbuh benzyl amino purin. Jurnal Warta Rimba, 7(3), 88–93. Retrivied from http://jurnal.untad.ac.id/jurnal/index.php/WartaRimba/article/view/13865
Aziz, A. M., Faridah, E., Indrioko, S., & Herawan, T. (2017). Induksi tunas, multiplikasi dan perakaran Gyrinops versteegii (Gilg.) domke secara in vitro. Jurnal Pemulian Tanaman Hutan, 11(1), 1–13. https://doi.org/10.20886/jpth.2017.11.1.1-13
Azizi, A. A. A., Tambunan, I. R., & Efendi, D. (2017). Multiplikasi tunas in vitro berdasarkan jenis eksplan pada enam genotipe tebu (Saccharum officinarum L.). Jurnal Penelitian Tanaman Industri, 23(2), 90–97. http://dx.doi.org/10.21082/littri.v23n2.2017.90-97
Azwin. (2016). Penggunaan BAP dan TDZ untuk perbanyakan tanaman gaharu (Aquilaria malaccensis Lamk.). Jurnal Ilmiah Pertanian, 13(1), 59–69. Retrivied from https://journal.unilak.ac.id/index.php/jip/article/view/976
Borpuzari, P. P., & Kachari, J. (2018). Effect of glutamine for high frequency in vitro regeneration of Aquilaria malaccensis Lamk. through nodal culture. Journal of Medicinal Plants Studies, 6(2), 9–16. Retrivied from https://www.plantsjournal.com/archives/2018/vol6issue2/PartA/6-1-41-277.pdf
CITES, [Convention on International Trade in Endangered Species]. (2004). Consideration of proposals for amendment of appendices I and II. CoP13 Prop, 49, 1–9. Retrivied from https://cites.org/sites/default/files/eng/cop/13/prop/E13-P49.pdf
Fattorini, L., Veloccia, A., Della Rovere, F., D’Angeli, S., Falasca, G., & Altamura, M. M. (2017). Indole-3-butyric acid promotes adventitious rooting in arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biology, 17, 121. https://doi.org/10.1186/s12870-017-1071-x
Fauzan, Y. S. A., Sandra, E., & Mulyono, D. (2015). Kajian elongasi pada tanaman in vitro gaharu (Aquilaria beccariana van Tiegh). Jurnal Bioteknologi & Biosains Indonesia (JBBI), 2(2), 65–72. https://doi.org/10.29122/jbbi.v2i2.511
Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?. Frontiers in Plant Science, 10, 536. https://doi.org/10.3389/fpls.2019.00536
Feng, J., Shi, Y., Yang, S., & Zuo, J. (2017). Cytokinins. Hormone Metabolism and Signaling in Plants, 77–106. https://doi.org/10.1016/B978-0-12-811562-6.00003-7
Feng, J., Yuan, L., & Bao-zhong, H. (2012). Overview of Plant Shooting Branch. Journal of Northeast Agricultural University (English Edition), 19(2), 74–85. https://doi.org/10.1016/s1006-8104(13)60042-2
Friml, J. (2003). Auxin transport - shaping the plant. Current Opinion in Plant Biology, 6(1), 7–12. https://doi.org/10.1016/S1369526602000031
Gultom, M. S., Anna, N., & Siregar, E. B. M. (2012). Respon eksplan biji gaharu (Aquilaria malaccensis Lamk.) terhadap pemberian IAA secara in vitro. Peronema Forestry Science Journal, 1(1),1–6. Retrivied from https://www.neliti.com/publications/156144/respon-eksplan-biji-gaharu-aquilaria-malaccensis-lamk-terhadap-pemberian-iaa-sec
Gunawan, L. W. (1992). Teknik Kultur Jaringan Tanaman. Bogor: IPB Press.
Hendaryono, D. P. S., & Wijayani, A. (2012). Teknik Kultur Jaringan. Yogyakarta: Kanisius.
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Ivanchenko, M. G., Napsucialy-Mendivil, S., & Dubrovsky, J. G. (2010). Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant Journal, 64(5), 740–752. https://doi.org/10.1111/j.1365-313X.2010.04365.x
Karlianda, N., Wulandari, R. S., & Mariani, Y. (2013). Pengaruh NAA dan BAP terhadap perkembangan subkultur gaharu (Aquilaria malaccensis Lamk). Jurnal Hutan Lestari, 1(1), 1–8. Retrieved from https://jurnal.untan.ac.id/index.php/jmfkh/article/view/602
Kaur, R., & Kapoor, M. (2016). Plant regeneration through somatic embryogenesis in Sugarcane. Sugar Tech, 18, 93–99. https://doi.org/10.1007/s12355-015-0380-3
Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of Botany, 112(9), 1655–1665. https://doi.org/10.1093/aob/mct229
Kumar, S., Malik, A., Yadav, R., & Yadav, G. (2019). Role of different rooting media and auxins for rooting in floricultural crops: a review. International Journal of Chemical Studies, 7(2), 1778–1783. Retrivied from https://www.chemijournal.com/archives/2019/vol7issue2/PartAD/7-2-4-418.pdf
Kumlay, A. M. (2014). Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. BioMed Research International, 2014, 439259. https://doi.org/10.1155/2014/439259
Kumsa, F. (2020). Factors affecting in vitro cultivation of grape (Vitis vinifera L.): A review. International Journal of Agricultural Research, Innovation and Technology, 10(1), 1–5. https://doi.org/10.3329/ijarit.v10i1.48087
Leksonowati, A., Witjaksono, & Ratnadewi, D. (2017). Induksi biak kalus dan biak suspensi sel Aquilaria malaccensis Lamk. Berita Biologi, 16(1), 1–11. http://dx.doi.org/10.14203/beritabiologi.v16i1.2687
Lestari, E. G. (2011). Peranan zat pengatur tumbuh dalam perbanyakan tanaman melalui kultur jaringan. Jurnal AgroBiogen, 7(1), 63–68. https://doi.org/10.21082/jbio.v7n1.2011.p63-68
Li, K., Han, H., Xie, Y., & Sun, X. (2021). Optimization of factors influencing adventitious rooting in hybrid larch. Phyton, 90(2), 583–593. https://doi.org/10.32604/phyton.2021.013912
Listiana, B E. (2017). Induce regeneration in vitro cultures of agarwood plant species, Aquilaria filaria. Crop Agro, 10(1), 63–68. Retrieved from https://www.semanticscholar.org/paper/INDUCE-REGENERATION-IN-IN-VITRO-CULTURES-OF-PLANT-%2C-Tanaman-Gaharu/22851fa69016c35735ced5aeb607fb68e919f3d6
Listiana, B. E., Sumarjan, Schurr, U., & Mulyaningsih, T. (2018). In vitro regeneration of agarwood plant (Aquilaria filarial). Proceeding 3rd International Conference on Science and Technology, 187–194. Retrivied from https://www.researchgate.net/profile/Tri-Mulyaningsih/publication/335338060_In_Vitro_Regeneration_of_Agarwood_Plant_Aquilaria_filarial/links/5d5f6c0b92851c3763736b2d/In-Vitro-Regeneration-of-Agarwood-Plant-Aquilaria-filarial.pdf
Mandang, Y. I., & Wiyono, B. (2002). Anatomi kayu gaharu dan beberapa jenis sekerabat. Buletin Penelitian Hasil Hutan, 20(2), 107–126. Retrivied from http://ejournal.forda-mof.org/ejournal-litbang/index.php/JPHH/article/view/3901/3393
Muller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. In Annals of Botany, 107(7), 1203–1212. https://doi.org/10.1093/aob/mcr069
Mulyono, D. (2010). Pengaruh zat pengatur tumbuh auksin: Indole Butiric Acid (IBA) dan sitokinin: Benzil Amino Purine (BAP) dan kinetin dalam elongasi pertunasan gaharu (Aquilaria beccariana). Jurnal Sains dan Teknologi Indonesia, 12(1), 1–7. https://doi.org/10.29122/jsti.v12i1.842
Munasinghe, S. P., Somaratne, S., Weerakoon, S. R., & Ranasinghe, C. (2021). In vitro propagation of Gyrinops walla Gaetner ‘Walla patta’, a vulnerable agarwood producing species in Sri Lanka. Sri Lankan Journal of Biology, 6(2), 14–19. https://doi.org/10.4038/sljb.v6i2.82
Oakes, A. D., Pilkey, H. C., & Powell, W. A. (2020). Improving ex vitro rooting and acclimatization techniques for micropropagated american chestnut. Journal of Environmental Horticulture, 38(4), 149–157. https://doi.org/10.24266/0738-2898-38.4.149
Pacurar, D. I., Perrone, I., & Bellini, C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiologia Plantarum, 151(1), 83–96. https://doi.org/10.1111/ppl.12171
Park, S. H., Elhiti, M., Wang, H., Xu, A., Brown, D., & Wang, A. (2017). Adventitious root formation of in vitro peach shoots is regulated by auxin and ethylene. Scientia Horticulturae, 226, 250–260. https://doi.org/10.1016/j.scienta.2017.08.053
Peña-Baracaldo, F. J., Chaparro-Zambrano, H. N., Sierra, A., Rodríguez, J., & Gutiérrez, M. C. (2018). Effect of different substrates and auxins on rooting of Leucadendron sp. (Proteaceae). Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 385–393. https://doi.org/10.31910/rudca.v21.n2.2018.968
Pop, T. I., Pamfil, D., & Bellini, C. (2011). Auxin control in the formation of adventitious roots. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 307–316. https://doi.org/10.15835/nbha3916101
Prasetyo, R., Sugiyono, Proklamasiningsih, E., & Dewi, P. S. (2020). Plantlet formation and acclimatization of sugarcane cv. PS 881 with different types and concentration of auxin. Biosaintifika: Journal of Biology & Biology Education, 12(3), 453–458. Retrieved from https://journal.unnes.ac.id/nju/index.php/biosaintifika/article/view/23482
Rahmat, M., & Nurlia, A. (2015). Konservasi dan pengembangan jenis pohon penghasil gaharu di KPHP Lakitan: potensi, tantangan dan alternatif kebijakan. Workshop Penguatan Apresiasi Dan Kesadaran Konservasi Jenis Kayu Lokal Sumatra Bernilai Tinggi, April. Retrieved from https://www.researchgate.net/publication/323410343_KONSERVASI_DAN_PENGEMBANGAN_JENIS_POHON_PENGHASIL_GAHARU_DI_KPHP_LAKITAN_POTENSI_TANTANGAN_DAN_ALTERNATIF_KEBIJAKAN
Reinert, J., & Yeoman, M. M. (1982). Plant Cell and Tissue Culture: A Laboratory Manual. Heidelberg: Springer. http://link.springer.com/10.1007/978-3-642-81784-7
Saini, S., Sharma, I., Kaur, N., & Pati, P. K. (2013). Auxin: A master regulator in plant root development. Plant Cell Reports, 32(6), 741–757. https://doi.org/10.1007/s00299-013-1430-5
Salisbury, F. B., & Ross, C. W. (1995). Fisiologi Tumbuhan. Bandung: ITB Press.
Sanan-Mishra, N., Varanasi, S. P. R. M., & Mukherjee, S. K. (2013). Micro-regulators of auxin action. Plant Cell Reports, 32(6), 733–740. https://doi.org/10.1007/s00299-013-1425-2
Santoso, E., Purwito, D., Pratiwi, Pari, G., Turjaman, M., Leksono, B., Widyatmoko, A., Irianto, R. S. B., Subiakto, A., Kartonowaluyo, T., Rahman, Tampubolon, A., & Siran, S. A. (2012). Master plan penelitian dan pengembangan gaharu tahun 2013-2023. Pusat Penelitian dan Pengembangan Konservasi & Rehabilitasi, Badan Penelitian dan Pengembangan Kehutanan–Kementerian Kehutanan. Retrivied from https://123dok.com/document/download/zw19r9gq
Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: Simply complicated. Journal of Experimental Botany, 64(9), 2565–2577. https://doi.org/10.1093/jxb/ert139
Schaller, G. E., Street, I. H., & Kieber, J. J. (2014). Cytokinin and the cell cycle. Current Opinion in Plant Biology, 21, 7–15. https://doi.org/10.1016/j.pbi.2014.05.015
Shakirova, F., Avalbaev, A., Bezrukova, M., & Kudoyarova, G. R. (2010). Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress, 4, 32–38. Retrieved from https://pdfs.semanticscholar.org/e466/2a44b9b457a7bc0351bb98b40e1a4e237239.pdf
Simon, S., & Petrášek, J. (2011). Why plants need more than one type of auxin. Plant Science, 180(3), 454–460. https://doi.org/10.1016/j.plantsci.2010.12.007
Sofian, A. A., Prihastanti, E., & Suedy, S. W. A. (2018). Effect of IBA and BAP on shoot growth of Tawangmangu tangerine (Citrus reticulate) by in vitro. Biosaintifika: Journal of Biology & Biology Education, 10(2), 379–387. https://doi.org/10.15294/biosaintifika.v10i2.14977
Sulistiani, E., & Yani, S. A. (2012). Produksi bibit tanaman dengan menggunakan teknik kultur jaringan. Bogor: SEAMEO BIOTROP. Retrieved from https://scholar.google.co.id/scholar?cites=12967167627110589156&as_sdt=2005&sciodt=0,5&hl=id
Taha, H., Ghazy, U. M., Gabr, A. M. M., EL-Kazzaz, A. A. A., Ahmed, E. A. M. M., & Haggag, K. M. (2020). Optimization of in vitro culture conditions affecting propagation of mulberry plant. Bulletin of the National Research Centre, 44, 60. https://doi.org/10.1186/s42269-020-00314-y
Wahyuni, A., Satria, B., & Zainal, A. (2020). Induksi kalus gaharu dengan NAA dan BAP secara in vitro. Agrosains: Jurnal Penelitian Agronomi, 22(1), 39–44. https://doi.org/10.20961/agsjpa.v22i1.36007
Wardatutthoyyibah, Wulandari, R. S., & Darwati, H. (2015). Penambahan auksin dan sitokinin terhadap pertumbuhan tunas dan akar gaharu (Aquilaria malaccensis Lamk) secara in vitro. Jurnal Hutan Lestari, 3(1), 43–50. Retrivied from https://jurnal.untan.ac.id/index.php/jmfkh/article/view/8897/8838
Zaerr, J. B., & Mapes, M. O. (1982). Actions of Growth Regulators. Martinus Nijhoff.
Zhao, Y. (2014). Auxin Biosynthesis. The Arabidopsis Book, 12, e0173. https://doi.org/10.1199/tab.0173
Refbacks
- There are currently no refbacks.