Microsatellite Markers and Metabolite Profiles of Salt-Tolerant Rice: Inpari Unsoed 79 Agritan

Rinanda Gandhi Ningrum Prasetia, Suprayogi Suprayogi, Ari Asnani, Eka Oktaviani, Isa Nuryana

Abstract

Salinity is a challenge in crop production. High salinity affects soil osmotic pressure and the balance of nutrients that inhibit plant growth. In such case, utilization of salt-tolerant rice varieties could be an alternative. This study aims to identify microsatellite markers associated with salt tolerance, compare the Inpari Unsoed 79 Agritan variety with ten other rice genotypes based on microsatellite markers and determine the qualitative composition metabolites in Inpari Unsoed 79 Agritan associated with the plant response to salinity. This research was carried out at the Laboratory of Plant Breeding and Biotechnology Universitas Jenderal Soedirman and Indonesian Institute of Sciences, Bogor. This research used eleven rice varieties and ten microsatellite markers. The identification of microsatellite markers consisted of genomic DNA extraction, quantification and qualification of DNA, amplification of microsatellite DNA and data analysis. Metabolite profiling was conducted on Gas Chromatography-Mass Spectrometry (GC-MS) instrument. The results showed that microsatellite markers RM 241, RM 515, RM 519 and RM 528 differentiate the Inpari Unsoed 79 Agritan from the IR 29 genotype. Microsatellite markers RM 129 and RM 292 distinguished the Nona Bokra from the IR 29 genotypes. The genetic relationship of eleven rice genotypes resulted in two clusters. The GC-MS metabolite compounds in Inpari Unsoed 79 Agritan are β-Alanine and trimethylsilyl ester β-Alanine, a derivative compound of β-Alanine. These findings suggested that microsatellite markers RM 129, RM 292, RM 241, RM 515, RM 519 and RM 528 were associated with salt-tolerant in the seedling stage.

Keywords

cluster analysis; metabolic modelling; multi-omics analysis; salt stress; simple sequence repeats

Full Text:

PDF

References

Akos, I. S., Yusop, M. R., Ismail, M. R., Ramlee, S. I., Shamsudin, N. A. A., Ramli, A. B., Haliru, B. S., Ismai’la, M., & Chukwu, S. C. (2019). A review on gene pyramiding of agronomic, biotic and abiotic traits in rice variety development. International Journal of Applied Biology, 3(2), 65–96. Retrieved from https://journal.unhas.ac.id/index.php/ijoab/article/view/7818

Ali, M. N., Yeasmin, L., Gantait, S., Goswami, R., & Chakraborty, S. (2014). Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiology and Molecular Biology of Plants, 20(4), 411–423. https://doi.org/10.1007/s12298-014-0250-6

BPS - Statistics Indonesia. (2020). 2019 harvested area and production of paddy in Indonesia. Retrieved from https://www.bps.go.id/publication/2020/12/01/21930121d1e4d09459f7e195/luas-panen-dan-produksi-padi-di-indonesia-2019.html

Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Molecular Plant-Microbe Interactions, 12(3), 227–235. https://doi.org/10.1094/MPMI.1999.12.3.227

Bernardi, J., Colli, L., Ughini, V., & Busconi, M. (2016). Use of microsatellites to study agricultural biodiversity and food traceability. In (Ed.), Microsatellite Markers. London, United Kingdom: IntechOpen.. https://doi.org/10.5772/64863

Cotsaftis, O., Plett, D., Johnson, A. A. T., Walia, H., Wilson, C., Ismail, A. M., Close, T. J., Tester, M., & Baumann, U. (2011). Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Molecular Plant, 4(1), 25–41. https://doi.org/10.1093/mp/ssq056

Dar, A. A., Mahajan, R., & Sharma, S. (2019). Molecular markers for characterization and conservation of plant genetic resources. Indian Journal of Agricultural Sciences, 89(11), 1755–1763. Retrieved from https://www.researchgate.net/publication/337339423_Molecular_markers_for_characterization_and_conservation_of_plant_genetic_resources

Das, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2015). Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Frontiers in Plant Science, 6, 712. https://doi.org/10.3389/fpls.2015.00712

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15. Retrieved from https://www.scienceopen.com/document?vid=46e6093b-769a-467f-be1a-fd0c2ecfa9c0

Feranisa, A. (2016). Komparasi antara Polymerase Chain Reaction (PCR) dan loopmediated isothermal amplification (Lamp) dalam diagnosis molekuler. ODONTO : Dental Journal, 3(2), 145–151. https://doi.org/10.30659/odj.3.2.145-151

Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596. https://doi.org/10.1155/2014/701596

Gupta, P., & De, B. (2017). Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signaling and Behavior, 12(7), e1335845. https://doi.org/10.1080/15592324.2017.1335845

Hairmansis, A., Nafisah, N., & Jamil, A. (2017). Towards developing salinity tolerant rice adaptable for coastal regions in Indonesia. KnE Life Sciences, 2(6), 72–79. http://dx.doi.org/10.18502/kls.v2i6.1021

Hariadi, Y. C., Nurhayati, A. Y., Soeparjono, S., & Arif, I. (2015). Screening six varieties of rice (Oryza sativa) for salinity tolerance. Procedia Environmental Sciences, 28, 78–87. https://doi.org/10.1016/j.proenv.2015.07.012

Hill, C. B., Jha, D., Bacic, A., Tester, M., & Roessner, U. (2013). Characterization of ion contents and metabolic responses to salt stress of different arabidopsis AtHKT1;1 genotypes and their parental strains. Molecular Plant, 6(2), 350–368. https://doi.org/10.1093/mp/sss125

Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., & Chandrasekhar, T. (2016). Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, 124, 39–63. https://doi.org/10.1016/j.envexpbot.2015.11.010

Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. In (Ed.), Climate Change and Agriculture. London, United Kingdom: IntechOpen. https://doi.org/10.5772/intechopen.87982

Indonesian Ministry of Agriculture. (2014). Varietas Inpari Unsoed 79 Agritan. Ministry of Agriculture, Indonesia. Retrieved from http://www.litbang.pertanian.go.id/varietas/1082/

Jalil, M., Sakdiah, H., Deviana, E., & Akbar, I. (2016). Pertumbuhan dan produksi beberapa varietas padi (Oryza sativa L.) pada berbagai tingkat salinitas. Jurnal Agrotek Lestari, 2(2), 63–74. Retrieved from http://jurnal.utu.ac.id/jagrotek/article/view/597

Jiménez-Arias, D., García-Machado, F. J., Morales-Sierra, S., García-García, A. L., Herrera, A. J., Valdés, F., Luis, J. C., & Borges, A. A. (2021). A beginner’s guide to osmoprotection by biostimulants. Plants, 10(2), 363. https://doi.org/10.3390/plants10020363

Kang, K., Park, S., Kim, Y. S., Lee, S., & Back, K. (2009). Biosynthesis and biotechnological production of serotonin derivatives. Applied Microbiology and Biotechnology, 83(1), 27–34. https://doi.org/10.1007/s00253-009-1956-1

Khush, G. S., & Virk., P. S. (2005). IR varieties and their impact. Los Baños, Philippines: International Rice Research Institute. Retrieved from http://books.irri.org/9712202062_content.pdf

Kumari, R., Kumar, P., Sharma, V. K., & Kumar, H. (2019). Seedling stage salt stress response specific characterization of genetic polymorphism and validation of SSR markers in rice. Physiology and Molecular Biology of Plants, 25(2), 407–419. https://doi.org/10.1007/s12298-018-0623-3

Lestari, P., Risliawati, A., & Koh, H. J. (2016). Identifikasi dan aplikasi marka berbasis PCR untuk identifikasi varietas padi dengan palatabilitas tinggi. Jurnal AgroBiogen, 8(2), 69–77. https://doi.org/10.21082/jbio.v8n2.2012.p69-77

Mohammadi-Nejad, G., Arzani, A., Reza, A. M., Singh, R. K., & Gregorio, G. B. (2008). Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. African Journal of Biotechnology, 7(6), 730–736. Retrieved from https://www.ajol.info/index.php/ajb/article/view/58504

Moniruzzaman, M., Alam, M. S., Rashid, J. A., Begum, S. N., & Islam, M. M. (2013). Marker-assisted backcrossing for identification of salt tolerant rice lines. International Journal of Agricultural Research, Innovation and Technology, 2(2), 1–8. https://doi.org/10.3329/ijarit.v2i2.14008

Nam, M. H., Bang, E., Kwon, T. Y., Kim, Y., Kim, E. H., Cho, K., Park, W. J., Kim, B. G., & Yoon, I. S. (2015). Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. International Journal of Molecular Sciences, 16(9), 21959–21974. https://doi.org/10.3390/ijms160921959

Osawaru, M., Ogwu, M. C., & Imarhiagbe, O. (2015). Principal Component Analysis (PCA) as an ideal tool for analysing on-farm research data. Biological and Environmental Sciences Journal for the Tropics, 12(1), 514–522. Retrieved from https://www.researchgate.net/publication/286620136_PRINCIPAL_COMPONENT_ANALYSIS_PCA_AS_AN_IDEAL_TOOL_FOR_ANALYSING_ON-FARM_RESEARCH_DATA

Parthasarathy, A., Savka, M. A., & Hudson, A. O. (2019). The synthesis and role of β-alanine in plants. Frontiers in Plant Science, 10, 921. https://doi.org/10.3389/fpls.2019.00921

Purnomo, E., & Ferniah, R. S. (2018). Polimorfisme cabai rawit dan cabai gendot dengan penanda RAPD (Random Amplified Polymorphic DNA) menggunakan primer OPA-8. Berkala Bioteknologi, 1(1), 1–5. Retrieved from https://ejournal2.undip.ac.id/index.php/bb/article/viewFile/2176/1379

Putri, P. H., Susanto, G. W. A., & Taufiq, A. (2017). Toleransi genotipe kedelai terhadap salinitas soybean genotype tolerance to salinity stress. Penelitian Pertanian Tanaman Pangan, 1(3), 233–242. Retrieved from https://www.researchgate.net/publication/323938007_Evaluasi_Ketahanan_Sumber_Daya_Genetik_Kedelai_terhadap_Cekaman_Salinitas/fulltext/5ab3b284a6fdcc1bc0c2f3bf/Evaluasi-Ketahanan-Sumber-Daya-Genetik-Kedelai-terhadap-Cekaman-Salinitas.pdf

Rani, B., & Sharma, V. K. (2019). Microsatellite (SSR) markers assisted characterization of rice (Oryza sativa L.) genotypes in relation to salt tolerance. Indian Journal of Biotechnology, 18(2), 151–163. Retrieved from http://nopr.niscair.res.in/handle/123456789/49661

Roessner, U., & Beckles, D. M. (2012). Metabolomics for salinity research. In: Shabala, S., Cuin, T. (eds) Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols), vol 913. Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-986-0_13

Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system version 2.1. Setauket, New York: Exeter Software. Retrieved from https://www.researchgate.net/publication/246982444_NTSYS-pc_-_Numerical_Taxonomy_and_Multivariate_Analysis_System

Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

Sinaga, A., Putri, L. A. P., & Bangun, M. K. (2017). Analisis pola pita andaliman (Zanthoxylum acanthopodium D.C) berdasarkan primer Opd 03, Opd 20, Opc 07, Opm 20, Opn 09. Jurnal Agroekoteknologi, 5(1), 55–64. Retrieved from https://talenta.usu.ac.id/joa/article/view/2289

Suhartini, T., & Harjosudarmo, T. Z. P. (2017). Toleransi plasma nutfah padi lokal terhadap salinitas. Buletin Plasma Nutfah, 23(1), 51–58. http://dx.doi.org/10.21082/blpn.v23n1.2017.p51-58

Suprayogi, Susanti, D., & Putranto, A. S. D. (2012). Keragaan agronomik galur-galur padi salin unsoed pada lahan non salin. Prosiding Seminar Nasional Pengembangan Sumber Daya Pedesaan dan Kearifan Lokal Berkelanjutan II, 232–238. Retrieved from http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/viewFile/255/254

Tolib, R., Kusmiyati, F., & Lukiwati, D. R. (2017). Pengaruh sistem tanam dan pupuk organik terhadap karakter agronomi turi dan rumput benggala pada tanah salin. Journal of Agro Complex, 1(2), 57–64. https://doi.org/10.14710/joac.1.2.57-64

Wang, Z., Chen, Z., Cheng, J., Lai, Y., Wang, J., Bao, Y., Huang, J., & Zhang, H. (2012). QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS ONE, 7(12), e51202. https://doi.org/10.1371/journal.pone.0051202

Yildiz, M., Poyraz, İ., Çavdar, A., Özgen, Y., & Beyaz, R. (2020). Plant responses to salt stress. In (Ed.), Plant Breeding - Current and Future Views. London, United Kingdom: IntechOpen. https://doi.org/10.5772/intechopen.93920

Refbacks

  • There are currently no refbacks.