Performance Evaluation of Induced Mutagenesis using Colchicine and EMS Solution on Cowpea M3 Purple and Mung Bean Vima1 to Increase Resistance

I Gede Ketut Susrama, Ni Made Trigunasih, I ketut Suada, Ni Nyoman Ari Mayadewi

Abstract

Induced mutagenesis is one way to improve the quality of crops, especially to increase the resistance to pests and diseases. This research aimed to determine colchicine and ethyl methane sulfonate (EMS) mutagenesis on cowpea M3 purple and mung bean Vima1, in concatenation for developing resistant crops. This research consists of four packages: (1) first package (cowpea M3 purple seeds treated with colchicine solution, (2) second package (cowpea M3 purple seeds treated with EMS solution), (3) third package (mung bean Vima1 seeds treated with colchicine solution) and (4) fourth package (mung bean Vima1 seeds treated with EMS solution). The results of this research revealed that induced mutagenesis by colchicine solution treatment reduced the incidence of bean leaf beetles up to 19% on cowpea M3 purple, as well leaf miners by 5% to 9% and bean leaf beetles up to 5% on mung bean Vima1. Treatment of EMS solution decreased the incidence of bean leaf beetles by 17% on cowpea M3 purple and pink mealybug by 5% to 15% on mung bean Vima1. Induced mutagenesis using EMS solution significantly decreased vegetable leaf miner incidence by 33% to 93% or 71% on average. Colchicine and EMS solution treatment caused aphid attacks in cowpea M3 purple, particularly in pods. The attacks did not happen on leaves and aphid incidence in pods was slower than in control. Some promising mutant candidates were found from this research that will be used in further crop development studies. It is expected that the method and results of this research could inspire faster development of resistant crops.

Keywords

chemical mutagens; crop improvement; ethyl methane sulfonate (EMS); mutation breeding; pest and disease resistance

Full Text:

PDF

References

Alemu, M., Asfaw, Z., Woldu, Z., Fenta, B. A., & Medvecky, B. (2016). Cowpea (Vigna unguiculata (L.) Walp.) (Fabaceae) landrace diversity in Northern Ethiopia. International Journal of Biodiversity and Conservation, 8(11), 297–309. https://doi.org/10.5897/ijbc2016.0946

Al-Kubati, A. M. S., Kang, B., Liu, L., Abbas, A., & Gu, Q. (2021). Development of bottle gourd lines resistant to zucchini yellow mosaic virus using ethyl methanesulfonate mutagenesis. HortScience, 56(8), 909–914. https://doi.org/10.21273/HORTSCI15898-21

Arisha, M. H., Shah, S. N. M., Gong, Z. H., Jing, H., Li, C., & Zhang, H. X. (2015). Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Frontiers in Plant Science, 6(399), 1–11. https://doi.org/10.3389/fpls.2015.00399

Atichart, P. (2013). Polyploid induction by colchicine treatments and plant regeneration of Dendrobium chrysotoxum. Thai Journal of Agricultural Science, 46(1), 59–63. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20133297863

Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140, 104095. https://doi.org/10.1016/j.biocontrol.2019.104095

Chrigui, N., Sari, D., Sari, H., Eker, T., Cengiz, M. F., Ikten, C., & Toker, C. (2021). Introgression of resistance to leafminer (Liriomyza cicerina Rondani) from Cicer reticulatum Ladiz. to C. arietinum L. and relationships between potential biochemical selection criteria. Agronomy, 11(1), 57. https://doi.org/10.3390/agronomy11010057

Comlekcioglu, N., & Ozden, M. (2019). Polyploidy induction by colchicine treatment in golden berry (Physalis peruviana), and effects of polyploidy on some traits. Journal of Animal and Plant Sciences, 29(5), 1336–1343. Retrieved from http://www.thejaps.org.pk/docs/v-29-05/14.pdf

Daryanto, S., Wang, L., & Jacinthe, P. A. (2015). Global synthesis of drought effects on food legume production. PLoS ONE, 10(6), e0127401. https://doi.org/10.1371/journal.pone.0127401

de Carvalho, M. de J. d. S., Gomes, V. B., Souza, A. da S., Aud, F. F., Santos-Serejo, J. A., & Oliveira, E. J. (2016). Inducing autotetraploids in cassava using oryzalin and colchicine and their in vitro morphophysiological effects. Genetics and Molecular Research, 15(2), gmr.15028281. https://doi.org/10.4238/gmr.15028281

Dennis, P. G., Kukulies, T., Forstner, C., Orton, T. G., & Pattison, A. B. (2018). The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Scientific Reports, 8(1), 2119. https://doi.org/10.1038/s41598-018-20589-6

Dias, D. M., Resende, J. T. V., Faria, M. V., Camargo, L. K. P., Chagas, R. R., & Lima, I. P. (2013). Selection of processing tomato genotypes with high acyl sugar content that are resistant to the tomato pinworm. Genetics and Molecular Research, 12(1), 381–389. https://doi.org/10.4238/2013.February.8.2

El-Nashar, Y. I., & Ammar, M. H. (2016). Mutagenic influences of colchicine on phenological and molecular diversity of Calendula officinalis L. Genetics and Molecular Research, 15(2), gmr.15027745. https://doi.org/10.4238/gmr.15027745

Goławska, S., Sprawka, I., Łukasik, I., & Goławski, A. (2014). Are naringenin and quercetin useful chemicals in pest-management strategies? Journal of Pest Science, 87(1), 173–180. https://doi.org/10.1007/s10340-013-0535-5

Julião, S. A., Ribeiro, C. do V., Lopes, J. M. L., Matos, E. M. de, Reis, A. C., Peixoto, P. H. P., Machado, M. A., Azevedo, A. L. S., Grazul, R. M., Campos, J. M. S. de, & Viccini, L. F. (2020). Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Frontiers in Plant Science, 11, 292. https://doi.org/10.3389/fpls.2020.00292

Kamminga, K. L., Koppel, A. L., Jr. D. A. H., & Kuhar, T. P. (2012). Biology and management of the green stink bug. Journal of Integrated Pest Management, 3(3), C1–C8. https://doi.org/10.1603/IPM12006

Karthikeyan, A., Shobhana, V. G., Sudha, M., Raveendran, M., Senthil, N., Pandiyan, M., & Nagarajan, P. (2014). Mungbean yellow mosaic virus (MYMV): A threat to green gram (Vigna radiata) production in Asia. International Journal of Pest Management, 60(4), 314–324. https://doi.org/10.1080/09670874.2014.982230

Kasmiyati, S., Kristiani, E. B. E., & Herawati, M. M. (2020). Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education, 12(1), 90–96. https://doi.org/10.15294/biosaintifika.v12i1.22548

Kaura, S., & Parle, M. (2017). Anti-ageing activity of moong bean sprouts. International Journal of Pharmaceutical Sciences and Research, 8(10), 4318–4324. https://doi.org/10.13040/IJPSR.0975-8232.8(10).4318-24

Khursheed, S., Raina, A., Laskar, R. A., & Khan, S. (2018). Effect of gamma radiation and EMS on mutation rate: Their effectiveness and efficiency in faba bean (Vicia faba L.). Caryologia, 71(4), 397–404. https://doi.org/10.1080/00087114.2018.1485430

Melsen, K., van de Wouw, M., & Contreras, R. (2021). Mutation breeding in ornamentals. HortScience, 56(10): 1154–1165. https://doi.org/10.21273/HORTSCI16001-21

Mishra, G. P., Dikshit, H. K., S. V, R., Tripathi, K., Kumar, R. R., Aski, M., Singh, A., Roy, A., Priti, Kumari, N., Dasgupta, U., Kumar, A., Praveen, S., & Nair, R. M. (2020). Yellow mosaic disease (YMD) of mungbean (Vigna radiata (L.) Wilczek): Current status and management opportunities. Frontiers in Plant Science, 11, 918. https://doi.org/10.3389/fpls.2020.00918

Mori, S., Yamane, T., Yahata, M., Shinoda, K., & Murata, N. (2016). Chromosome doubling in Limonium bellidifolium (Gouan) dumort. by colchicine treatment of seeds. Horticulture Journal, 85(4), 366–371. https://doi.org/10.2503/hortj.MI-117

Mustafa, N. S., Liu, F., Odongo, M. R., Wang, X., Cai, X., Zhang, Z., & Wang, K. (2017). Effects of colchicine treatments on chromosome doubling in three diploid cotton species. Journal of Multidisciplinary Engineering Science and Technology, 4(4), 7140–7145. Retrieved from http://www.jmest.org/wp-content/uploads/JMESTN42352173.pdf

Nair, R. M., Pandey, A. K., War, A. R., Hanumantharao, B., Shwe, T., Alam, A. K. M. M., Pratap, A., Malik, S. R., Karimi, R., Mbeyagala, E. K., Douglas, C. A., Rane, J., & Schafleitner, R. (2019). Biotic and abiotic constraints in mungbean production—progress in genetic improvement. Frontiers in Plant Science, 10, 1340. https://doi.org/10.3389/fpls.2019.01340

Niu, L., & Liao, W. (2016). Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Frontiers in Plant Science, 7, 230. https://doi.org/10.3389/fpls.2016.00230

Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2015). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment, 30(1), 1–16. https://doi.org/10.1080/13102818.2015.1087333

Piasecka, A., Jedrzejczak-Rey, N., & Bednarek, P. (2015). Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytologist, 206(3), 948–964. https://doi.org/10.1111/nph.13325

Roychowdhury, R., & Tah, J. (2011). Chemical mutagenic action on seed germination and related agro-metrical traits in M1 Dianthus generation. Current Botany, 2(8), 19–23. Retrieved from https://www.researchgate.net/publication/215757097_Chemical_Mutagenic_Action_on_Seed_Germination_and_Related_Agro-metrical_Traits_in_M1_Dianthus_Generation

Salama, H. S. A., Nawar, A. I., & Khalil, H. E. (2022). Intercropping pattern and N fertilizer schedule affect the performance of additively intercropped maize and forage cowpea in the Mediterranean Region. Agronomy, 12(1), 107. https://doi.org/10.3390/agronomy12010107

Smirnoff, N., & Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist, 221(3), 1197–121. https://doi.org/10.1111/nph.15488

Stec, K., Kordan, B., & Gabryś, B. (2021). Effect of soy leaf flavonoids on pea aphid probing behavior. Insects, 12(8), 756. https://doi.org/10.3390/insects12080756

Susrama, I. G. K., & Pradnyawathi, N. L. M. (2020). Induced in vivo mutagenesis using colchicine in hydrogen peroxide on M2 cowpea, yardlong bean and common bean. International Journal of Biosciences and Biotechnology, 7(1), 1–11. https://doi.org/10.24843/ijbb.2019.v07.i01.p01

Susrama, I. G. K., & Wirawan, I. G. P. (2017). Crop improvement through inducing mutagenesis in vivo using colchicine on cowpea (Vigna unguiculata L. Walp). International Journal of Biosciences and Biotechnology, 4(2), 85–91. https://doi.org/10.24843/ijbb.2017.v04.i02.p02

Talebi, A. B., Talebi, A. B., & Shahrokhifar, B. (2012). Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. American Journal of Plant Sciences, 3(12), 1661–1665. https://doi.org/10.4236/ajps.2012.312202

Tammu, R. M., Nuringtyas, T. R., & Daryono, B. S. (2021). Colchicine effects on the ploidy level and morphological characters of Katokkon pepper (Capsicum annuum L.) from North Toraja, Indonesia. Journal of Genetic Engineering and Biotechnology, 19(1), 31. https://doi.org/10.1186/s43141-021-00131-4

Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., Ding, Z., Wang, W., Wang, Z. Y., & Bai, M. Y. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 9(1), 1063. https://doi.org/10.1038/s41467-018-03463-x

Tsukaya, H. (2013). Does ploidy level directly control cell size? Counterevidence from arabidopsis genetics. PLoS ONE, 8(12), e83729. https://doi.org/10.1371/journal.pone.0083729

Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112

Wang, Z., Fan, G., Dong, Y., Zhai, X., Deng, M., Zhao, Z., Liu, W., & Cao, Y. (2017). Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis. PLoS ONE, 12(3), e0172633. https://doi.org/10.1371/journal.pone.0172633

Xue, Z., Wang, C., Zhai, L., Yu, W., Chang, H., Kou, X., & Zhou, F. (2016). Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences, 34(1), 68–78. https://doi.org/10.17221/434/2015-CJFS

Refbacks

  • There are currently no refbacks.