The Alternative Media Supporting the Protocorm and Plantlet Growth of the Indonesian Black Orchid (Coelogyne pandurata Lindl.) Grown In Vitro

Rindang Dwiyani, Yuyun Fitriani, Ixora Sartika Mercuriani


Due to the high cost of the most often used basic media in tissue culture, it is vital to identify more affordable alternatives. This research aimed to determine the best alternative culture media for the protocorm and plantlet growth of Coelogyne pandurata Lindl. It employed a completely randomized design, eight treatments and four replications. The treatments referred to the different types media and consisted of M1 = New Phalaenopsis (NP) medium, M2 = a medium made from foliar fertilizer (FFM), M3 = NP + 2 cc L-1 AB mix solution (a media for hydroponics), M4 = FFM + 2 cc L-1 AB mix solution, M5 = NP + 50 cc L-1 of tomato extract, M6 = NP + 50 cc L-1 of bean sprout extract, M7 = FFM + 50 cc L-1 of tomato extract and M8 = FFM + 50 cc L-1 of bean sprout extract. The M4 medium exhibited the best results in terms of average leaves count (4.80), average shoot length (2.68 cm), average root length (4.35 cm), the average fresh weight per plantlet (214.5 mg) and dry weight of plantlets (73.1 mg). The average number of roots per plantlet was 4.25, acquired using the less expensive M8 treatment, which also produces a negligible number of leaves (4.50). In conclusion, the M4 medium is the most appropriate medium for growing protocorm and plantlet of C. pandurata. The experiment also found that the FFM basic medium combined with 50 cc L-1 of bean sprout extract can be used as another cheaper alternative for growing protocorms of C. pandurata.


foliar fertilizer media; in vitro propagation; medium selection; orchid culture

Full Text:



Aksona, G., & Ünay, A. (2019). The Effects of foliar applied atonik and amino acid on yield and fiber quality in cotton (Gossypium hirsutum L.). Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 16(1), 81–84.

Akter, S., Nasiruddin, K., & Khaldun, A. (2007). Organogenesis of dendrobium orchid using traditional media and organic extracts. Journal of Agriculture & Rural Development, 5(1&2), 30–35.

Arditti, J. (1992). Fundamentals of orchid biology. New York USA: John Wiley & Sons. Retrieved from,5

Astarini, I. A., Claudia, V., Adi, N. K. A. P., Sudirga, S. K., & Astiti, N. P. A. (2015). In vitro propagation and acclimatization of black orchid (Coelogyne pandurata Lindl.). Acta Horticulturae, 1078, 155–158.

Atkinson, J. A., Rasmussen, A., Traini, R., Voß, U., Sturrock, C., Mooney, S. J., Wells, D. M., & Bennett, M. J. (2014). Branching out in roots: Uncovering form, function, and regulation. Plant Physiology, 166(2), 538–550.

Calevo, J., Copetta, A., Marchioni, I., Bazzicalupo, M., Pianta, M., Shirmohammadi, N., Cornara, L., & Giovannini, A. (2020). The use of a new culture medium and organic supplement to improve in vitro early stage development of five orchid species. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 1–9.

Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41.

Cha-um, S., Puthea, O., & Kirdmanee, C. (2009). An effective in-vitro acclimatization using uniconazole treatments and ex-vitro adaptation of Phalaenopsis orchid. Scientia Horticulturae, 121(4), 468–473.

Chen, G., Wu, G., Chen, L., Wang, W., Hong, F. F., & Jönsson, L. J. (2019). Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass. Microbial Biotechnology, 12(4), 677–687.

Covașă, M., Jităreanu, C. D., Slabu, C., Marta, A. E., & Modiga, B. A. (2019). The influence of biostimulants on the growth and some physiological processes of three bean cultivars. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 76(1), 17–20. Retrieved from

Mustika, N. D., & Semiarti, E. (2021). In vitro culture of Dendrobium lineale Rolfe orchid for plant breeding and propagation. IOP Conference Series: Earth and Environmental Science, 913, 012066.

Dwiyani, R. (2013). Perkecambahan biji dan pertumbuhan protokorm anggrek dari buah dengan umur yang berbeda pada media kultur yang diperkaya dengan ekstrak tomat. Jurnal Hortikultura Indonesia, 4(2), 90–93. Retrieved from

Dwiyani, R. (2014). Anggrek Vanda tricolor Lindl. var. suavis. Denpasar: Udayana University Press. Retrieved from

Dwiyani, R., Yuswanti, H., Darmawati, I. A. P., Suada, K., & Mayadewi, N. N. A. (2015). In vitro germination and its subsequent growth of an orchid of Vanda tricolor Lindl. var. suavis from Bali on complex additives enriched medium. Agrivita, 37(2), 144–150.

Ehirim, B. O., Ishaq, M. N., Agboire, S., Solomon, C., Ejizu, A. N., & Diarra, A. (2014). Acclimatization: An important stage in tissue culture. Asian American Plant Science Research Journal, 1(1), 1–7.

Evangelista, F. R., Chairez, I., Sierra, S., Lara, H. L., Martínez-González, C. R., Garín Aguilar, M. E., & Valencia del Toro, G. (2021). A novel coconut-malt extract medium increases growth rate of morels in pure culture. AMB Express, 11, 167.

Gruber, B. D., Giehl, R. F. H., Friedel, S., & von Wirén, N. (2013). Plasticity of the arabidopsis root system under nutrient deficiencies. Plant Physiology, 163(1), 161–179.

Huh, Y. S., Lee, J. K., Nam, S. Y., Paek, K. Y., & Suh, G. U. (2016). Improvement of asymbiotic seed germination and seedling development of Cypripedium macranthos Sw. with organic additives. Journal of Plant Biotechnology, 43(1), 138–145.

Islam, M. O., Ichihashi, S., & Matsui, S. (1998). Control of growth and development of protocorm like body derived from callus by carbon sources in phalaenopsis. Plant Biotechnology, 15(4), 183–187.

Kartiman, R., Sukma, D., Aisyah, S. I., & Purwito, A. (2018). Multiplikasi in vitro anggrek hitam (Coelogyne pandurata Lindl.) pada perlakuan kombinasi NAA dan BAP. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 5(1), 75–87.

Long, B., Niemiera, A. X., Cheng, Zy., & Long, Cl. (2010). In vitro propagation of four threatened Paphiopedilum species (Orchidaceae). Plant Cell, Tissue and Organ Culture (PCTOC), 101(2), 151–162.

Mladenovic, J., Đokovic, G. A., Pavlovic, R., Zdravkovic, M., Girek, Z., & Zdravkovic, J. (2014). The biologically active (bioactive) compounds in tomato (Lycopersicon esculentum Mill.) as a function of genotype. Bulgarian Journal of Agricultural Science, 20(4), 877–882. Retrieved from

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Nibau, C., Gibbs, D. J., & Coates, J. C. (2008). Branching out in new directions: The control of root architecture by lateral root formation. New Phytologist, 179(3), 595–614.

Parthibhan, S., Rao, M. V., & Kumar, T. S. (2015). In vitro regeneration from protocorms in Dendrobium aqueum Lindley – An imperiled orchid. Journal of Genetic Engineering and Biotechnology, 13(2), 227–233.

Puspitaningtyas, D. M. (2020). Orchid diversity in a logging concession in Tabalong District, South Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 21(11), 5455–5464.

Przybysz, A., Gawrońska, H., & Gajc-Wolska, J. (2014). Biological mode of action of a nitrophenolates-based biostimulant: Case study. Frontiers in Plant Science, 5, 1–15.

Semiarti, E., Indrianto, A., Suyono, E. A., Nurwulan, R. L., Restiani, R., Machida, Y., & Machida, C. (2010). Genetic transformation of the indonesian black orchid (Coelogyne pandurata Lindley) through Agrobacterium tumefaciens for micropropagation. Proceedings of Nagoya International Orchid Congress 2010. Retrieved from

Semiarti, E., Indrianto, A., Purwantoro, A., Machida, Y., & Machida, C. (2011). 11 Agrobacterium-mediated transformation of Indonesian orchids for micropropagation. In M. A. Alvarez (Ed.), Genetic Transformation pp. 215-240. Rijeka, Croatia: InTech. Retrieved from

Sousa, K. C. I., De Araújo, L. G., De Sousa Silva, C., De Carvalho, J. C. B., Sibov, S. T., De Almeida Gonçalves, L., Pereira, M. C., Gonçalves, F. J., & Da Corsi De Filippi, M. C. (2019). Seed germination and development of orchid seedlings (Cyrtopodium saintlegerianum) with fungi. Rodriguesia, 70, e02302016.

Untari, R., & Puspitaningtyas, D. M. (2006). The effect of some organic compounds and NAA application on the in vitro growth of the black orchid (Coelogyne pandurata Lindl.). Biodiversitas Journal of Biological Diversity, 7(4), 344–348.

Utami, E. S. W., & Hariyanto, S. (2019). In vitro seed germination and seedling development of a rare indonesian native orchid Phalaenopsis amboinensis J.J.Sm. Scientifica, 2019, 8105138.

Utami, E. S. W., & Hariyanto, S. (2020). Organic compounds: contents and their role in improving seed germination and protocorm development in orchids. International Journal of Agronomy, 2020, 2795108.

Vacin, E. F., & Went, F. W. (1949). Some pH changes in nutrient solutions. Botanical Gazette, 110(4), 605–613.

Vudala, S. M., & Ribas, L. L. F. (2017). Seed storage and asymbiotic germination of Hadrolaelia grandis (Orchidaceae). South African Journal of Botany, 108, 1–7.

Wahyudiningsih, T. S., Jagau, Y., & Ravenska, N. (2018). Konservasi Coelogyne pandurata Lindh. di Kalimantan Tengah : Karakter morfologi, propagasi in vitro, dan pelestarian berbasis komunitas lokal. Jurnal Pengelolaan Lingkungan Berkelanjutan, 2(2), 125–139.

Yeung, E. C. (2017). A perspective on orchid seed and protocorm development. Botanical Studies, 58, 33.

Zeng, S., Huang, W., Wu, K., Zhang, J., Teixeira da Silva, J. A., & Duan, J. (2015). In vitro propagation of Paphiopedilum orchids. Critical Reviews in Biotechnology, 36(3), 521–534.

Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., Huang, W., & Hu, H. (2018). Physiological diversity of orchids. Plant Diversity, 40(4), 196–208.


  • There are currently no refbacks.