Seedling Growth Analysis of Papaya Cultivated on Several Planting Media Enriched by Plant Growth Promotor Microbes

Dewi Fatria, Andre Sparta, Deni Emilda, Bambang Hariyanto, Tri Budiyanti, Martias Martias, Mizu Istianto

Abstract

There are factors contributed to the growth and development of fruit crop seedling. Microbes are well known as plant growth promotors such as symbiotic mycorrhizae and antagonist fungi, Trichoderma spp. The main objective of this experiment is to find out the best medium composition enriched by beneficial microbes to improve papaya seedling growth. The experiment was conducted at Sumani Experimental Station, Indonesian Tropical Fruit Research Institute, Solok, West Sumatera, Indonesia from August until December 2017. The experiment was arranged in a Randomized Complete Block Design with ten treatments and three replicate blocks. The treatments were ten combinations of media for papaya seedling growth enriched by plant growth promotor microbes. In this experiment, medium soil with additional manure, rice husk charcoal and compost (single or combination) combined with mycorrhizae were used. Also, the effect of Trichoderma sp. enrichment into media composition were tested in this experiment. Treatments SCRMc and SCRMcT; with its complexity; were the best media composition to promote papaya seedling growth. These treatments resulted in best performance of plant height, stem diameter and number of leaves of papaya seedlings. The additional of Trichoderma sp. into medium did not show beneficial effect for all parameters in this experiment.

Keywords

fruit crop; growth promotor; symbiotic mycorrhizae; Trichoderma

Full Text:

PDF

References

Aguilar, E. A., Elleva, L. I. F., Fabro, D. M. A., Garcia, G. R., Divina, F. A. II., & Aggangan, N. (2018). Arbuscular mycorrhizal fungi increased root-mycorrhizal association and enhanced seedling growth of abaca, papaya, and sugarcane. International Society for Southeast Asian Agricultural Sciences, 24(2), 22–29. Retrieved from http://issaasphil.org/wp-content/uploads/2019/01/3.-AGUILAR-et-al-2018-Seedling-Inoculam-Mycovam-FINAL.pdf

Ait-El-Mokhtar, M., Laouane, R. B., Anli, M., Boutasknit, A., Wahbi, S., & Meddich, A. (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253, 429–438. https://doi.org/10.1016/j.scienta.2019.04.066

Barari, H. (2016). Biocontrol of tomato Fusarium wilt by Trichoderma species under in vitro and in vivo conditions. Cercetări Agronomice În Moldova, 49(1), 91–98. Retrieved from http://www.uaiasi.ro/CERCET_AGROMOLD/CA1-16-08.pdf

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 10, 1068. https://doi.org/10.3389/fpls.2019.01068

Bhardwaj, R. L. (2014). Effect of growing media on seed germination and seedling growth of papaya cv. Red lady. African Journal of Plant Science, 8(4), 178–184. Retrieved from https://academicjournals.org/article/article1398438500_Bhardwaj.pdf

Blaya, J., Lopez-Mondejar, R., Lloret, E., Pascual, J. A., & Ros, M. (2013). Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic. Biochem. Physiol., 107(1), 112–119. https://doi.org/10.1016/j.pestbp.2013.06.001

Camprubi, A., & Calvet, C. (1996). Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. HortScience, 31(3), 366–369. https://doi.org/10.21273/HORTSCI.31.3.366

Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M., & Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, 2516. https://doi.org/10.3389/fmicb.2017.02516

Clark, R. B., & Zeto, S. K. (1996). Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry, 28(10–11), 1495–1503. https://doi.org/10.1016/S0038-0717(96)00163-0

Cruz, A. F., de Oliveira, B. F., & Pires, M. D. C. (2017). Optimum level of nitrogen and phosphorus to achieve better papaya (Carica papaya var. Solo) seedlings growth and mycorrhizal colonization. International Journal of Fruit Science, 17(3), 259–268. https://doi.org/10.1080/15538362.2016.1275922

Dutra, P. V., Abad, M., Almela, V., & Agusti, M. (1996). Auxin interaction with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith improves vegetative growth of two citrus rootstocks. Scientia Horticulturae, 66(1–2), 77–83. https://doi.org/10.1016/0304-4238(96)00887-4

Ferrigo, D., Raiola, A., Rasera, R., & Causin, R. (2014). Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Protection, 65, 51–56. https://doi.org/10.1016/j.cropro.2014.06.018

Fortuna, P., Citernesi, A. S., Morini, S., Vitagliano, C., & Giovannetti, M. (1996). Influence of arbuscular mycorrhizae and phosphate fertilization on shoot apical growth of micropropagated apple and plum rootstocks. Tree Physiology, 16(9), 757–763. https://doi.org/10.1093/treephys/16.9.757

Ge, M., Chen, G., Hong, J., Huang, X., Zhang, L., Wang, L., Ye, L., & Wang, X. (2012). Screening for formulas of complex substrates for seedling cultivation of tomato and marrow squash. Procedia Environmental Sciences, 16, 606–615. https://doi.org/10.1016/j.proenv.2012.10.083

Guler, N. S., Pehlivan, N., Karaoglu, S. A., Guzel, S., & Bozdeveci, A. (2016). Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiologiae Plantarum, 38(6), 132. https://doi.org/10.1007/s11738-016-2153-3

Gutiarrez-Miceli, F. A., Ayora-Talavera, T., Abud-Archila, M., Salvador-Figueroa, M. Adriano-Anaya, L. Hernandez, M. A., & Dendooven, L. (2008). Acclimatization of micropropagated orchid Guarianthe skinnerii inoculated with Trichoderma harzianum. Asian Journal of Plant Sciences, 7(3), 327–330. https://dx.doi.org/10.3923/ajps.2008.327.330

John, J., Kernaghan, G., & Lundholm, J. (2017). The potential for mycorrhizae to improve green roof function. Urban Ecosystems, 20(1), 113–127. https://doi.org/10.1007/s11252-016-0573-x

Lin, J., Wang, Y., Sun, S., Mu, C., & Yan, X. (2017). Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 576, 234–241. https://doi.org/10.1016/j.scitotenv.2016.10.091

López-Coria, M., Hernández-Mendoza, J. L., & Sánchez-Nieto, S. (2016). Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Molecular Plant-Microbe Interactions, 29(10), 797–806. https://doi.org/10.1094/MPMI-07-16-0138-R

Magallon-Servin, P., Antoun, H., Taktek, S., & De-Bashan, L. E. (2020). Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biology and Fertility of Soils, 56(4), 521–536. https://doi.org/10.1007/s00374-020-01452-1

Martinez-Medina, A., Roldan, A., & Pascual, J. A. (2011). Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology, 47(2), 98–105. https://doi.org/10.1016/j.apsoil.2010.11.010

Matsubara, Y., Karikomi, T., Ikuta, M., Hori, H., Ishikawa, S., & Harada, T. (1996). Effect of arbuscular mycorrhiza fungus inoculation on growth of apple (Malus ssp.) seedlings. Journal of the Japanese Society for Horticultural Science, 65(2), 297–302. https://doi.org/10.2503/jjshs.65.297

Meng, X., Dai, J., Zhang, Y., Wang, X., Zhu, W., Yuan, X., Yuan, H., & Cui, Z. (2018). Composted biogas residue and spent mushroom substrate as a growth medium for tomato and pepper seedlings. Journal of Environmental Management, 216, 62–69. https://doi.org/10.1016/j.jenvman.2017.09.056

Miransari, M., Bahrami, H. A., Rejali, F., & Malakouti, M. J. (2009). Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil and Tillage Research, 104(1), 48–55. https://doi.org/10.1016/j.still.2008.11.006

Mo, Y., Wang, Y., Yang, R., Zheng, J., Liu, C., Li, H., Ma, J., Zhang, Y., Wei, C., & Zhang, X. (2016). Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Frontiers in Plant Science, 7, 644. https://doi.org/10.3389/fpls.2016.00644

Muas, I. (2003). Peranan cendawan mikoriza arbuskula terhadap peningkatan serapan hara oleh bibit pepaya. Jurnal Hortikultura, 13(2), 105–113. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jhort/article/view/1137

Muas, I. (2004). Efek inokulasi cendawan mikoriza arbuskula terhadap kolonisasi akar dan pertumbuhan bibit pepaya. Jurnal Hortikultura, 14(3), 152–160. Retrieved from https://scholar.google.co.id/scholar?cluster=16025541693912818150&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Muas, I. (2005). Kebergantungan dua kultivar pepaya terhadap cendawan mikoriza arbuskula. Jurnal Hortikultura, 15(2), 102–108. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jhort/article/view/933

Murugesan, S., Mohan, V., Senthilkumar, N., Lakshmidevi, R., Babu, D. S., & Sumathi, R. (2016). Effects of growing media with bioinoculants on quality seedlings production of Eucalyptus tereticornis in nursery conditions. European Journal of Experimental Biology, 6(3), 86–93. Retrieved from https://www.imedpub.com/articles/effects-of-growing-media-with-bioinoculants-on-quality-seedlings-production-of-ieucalyptus-tereticornisi-in-nursery-conditions.pdf

Murunde, R., Muriithi, I., & Wainwright, H. (2018). Potential use of endophytic bacterial and fungi as bio fertilizer to promote plant growth in tissue culture banana. Journal of Molecular Studies and Medicine Research, 3(2), 148–160. Retrieved from https://www.researchgate.net/profile/Henry-Wainwright/publication/336892397_Potential_use_of_endophytic_bacterial_and_fungi_as_bio_fertilizer_to_promote_plant_growth_in_tissue_culture_banana/links/5db97c244585151435d24e52/Potential-use-of-endophytic-bacterial-and-fungi-as-bio-fertilizer-to-promote-plant-growth-in-tissue-culture-banana.pdf

Nakasone, H. Y., & Paull, R. E. (1999). Crop Production Science in Horticulture. Wallingford: CAB International. Retrieved from https://scholar.google.co.id/scholar?cluster=15045830049638273639&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Nawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67(2), 149–156. https://doi.org/10.1016/j.biocontrol.2013.07.005

Odoh, C. K., Eze, C. N., Obi, C. J., Anyah, F., Egbe, K., Unah, U. V., Akpi, U. K., & Adobu, U. S. (2020). Fungal biofertilizers for sustainable agricultural productivity. In Yadav, A., Mishra, S., Kour, D., Yadav, N., & Kumar, A. (Eds.), Agriculturally Important Fungi for Sustainable Agriculture, Fungal Biology (pp. 199–225). Springer, Cham. https://doi.org/10.1007/978-3-030-45971-0_9

Oliveira Filho, F. S., Medeiros, J. F., Gurgel, M. T., Abrantes, E. G., Rolim, H. O., & Cassimiro, C. A. L. (2020). Arbuscular mycorrhizal fungi as mitigating agents of salt stress in Formosa papaya seedlings. Comunicata Scientiae, 11, e3188–e3188. https://doi.org/10.14295/cs.v11i0.3188

Ozturk, A., & Serdar, U. (2011). Effects of different nursery conditions on the plant development and some leaf characteristics in Chestnuts (Castanea sativa Mill.). Australian Journal of Crop Science, 5(10), 1218–1123. Retrieved from https://www.researchgate.net/publication/286111302_Effects_of_different_nursery_conditions_on_the_plant_development_and_some_leaf_characteristics_in_Chestnuts_Castanea_sativa_Mill

Pusat Data dan Sistem Informasi Pertanian. (2019). Statistik pertanian 2019. (Susanti, A. A., & Heni, T. Eds.). Jakarta: Kementerian Pertanian Republik Indonesia. Retrieved from http://epublikasi.setjen.pertanian.go.id/arsip-perstatistikan/713-statistik-pertanian-2019

Soepardi, G. (1983). Sifat dan ciri tanah. Bogor: Institut Pertanian Bogor. Retrieved from https://scholar.google.co.id/scholar?cluster=12404844674177772349&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Suhaila, Zahrah, S., & Sulhaswardi. (2013). Perbandingan campuran media tumbuh dan berbagai konsentrasi atonik untuk pertanaman bibit (Eucalyptus pellita). Jurnal Dinamika Pertanian, 28(3), 225–236. Retrieved from https://journal.uir.ac.id/index.php/dinamikapertanian/article/view/874

Sumartuti, H. (2004). Pengaruh cara ekstraksi dan pengeringan benih terhadap viabilitas benih dan vigor bibit pepaya (Carica papaya L.) [Undergraduate thesis]. Departemen Budidaya Pertanian Fakultas Pertanian Institut Pertanian Bogor. Retrieved from https://scholar.google.co.id/scholar?cluster=1242879247744830849&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Talanca, H. (2010). Status cendawan mikoriza vesikular arbuskular (MVA) pada tanaman. Prosiding Pekan Serealia Nasional, 353–357. Retrieved from http://balitsereal.litbang.pertanian.go.id/wp-content/uploads/2016/12/p45.pdf

Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., & De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products, 102, 144–153. https://doi.org/10.1016/j.indcrop.2017.03.010

Tedersoo, L., & Bahram, M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews, 94(5), 1857–1880. https://doi.org/10.1111/brv.12538

Verzeaux, J., Hirel, B., Dubois, F., Lea, P. J., & Tétu, T. (2017). Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Science, 264, 48–56. https://doi.org/10.1016/j.plantsci.2017.08.004

Wang, F., Liu, X., Shi, Z., Tong, R., Adams, C. A., & Shi, X. (2016). Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–A soil microcosm experiment. Chemosphere, 147, 88–97. https://doi.org/10.1016/j.chemosphere.2015.12.076

Yadav, K., Aggarwal, A., & Singh, N. (2013). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products, 45, 88–93. https://doi.org/10.1016/j.indcrop.2012.12.001

Yano, K., & Takaki, M. (2005). Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biology and Biochemistry, 37(8), 1569–1572. https://doi.org/10.1016/j.soilbio.2005.01.010

Zhang, S., Gan, Y., & Xu, B. (2019). Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology, 19(1), 22. https://doi.org/10.1186/s12870-018-1618-5

Refbacks

  • There are currently no refbacks.