Yield and Nutritional Quality of Green Leafy Lettuce (Lactuca sativa L.) under Soilless Culture System Using Various Composition of Growing Media and Vermicompost Rates

Nurhidayati Nurhidayati, Masyhuri Machfudz, Abdul Basit

Abstract

Soilless culture system (SCS) production is preferred because it is more hygienic and highly nutritious and free of chemical pesticides. However, the application of organic fertilizers in SCS for green vegetable cultivation is still rarely used. This study was to test various growing media compositions and vermicompost rates on green lettuce's nutritional quality. Four types of growing media (using the mixture of cocopeat, zeolite, rice husk biochar and sand) and five levels of vermicompost rates (50-250 g pot-1) were tested. The greatest total fresh weight and marketable yield were found using 55% cocopeat, 30% rice husk biochar and 15% sand with a vermicompost rate of 250 g pot-1. The highest nutritional quality of green lettuce as measured by the highest content of chlorophyll A, B, the total chlorophyll and calcium (Ca) was found in the composition of cocopeat 55%, zeolite 30% and sand 15%. As was, the highest mineral content of of potassium (K) and phosphorus (P). Good quality lettuce was found in growing media using 30% biochar with a vermicompost rates of 200-250 g pot-1 and growing media using 30% zeolite with a vermicompost rates of 150-200 g pot-1. Thus, the admixtures of biochar and zeolite into the cocopeat substrate for the soilless culture system of green leafy lettuce significantly affected yield and nutritional quality.

Keywords

chlorophyll content; mineral content; organic fertilizer; soilless cultivation

Full Text:

PDF

References

Altland, J. E., & Locke, J. C. (2012). Biochar affects macronutrient leaching from a soilless substrate. HortScience, 47(8), 1136–1140. https://doi.org/10.21273/hortsci.47.8.1136

Alsuhaibani, A. M., ALkehayez, N. M., Alshawi, A. H., & Al-Faris, N. A. (2017). Effects of chlorophyll on body functioning and blood glucose levels. Asian Journal of Clinical Nutrition, 9(2), 64-70. https://dx.doi.org/10.3923/ajcn.2017.64.70

Arshiya, S. (2013). The antioxidant effect of certain fruits: - A review. Journal of Pharmaceutical Sciences and Research, 5(12), 265–268. Retrieved from https://www.jpsr.pharmainfo.in/Documents/Volumes/vol5issue12/jpsr05121304.pdf

Asaduzzaman, M., Saifullah, M., Mollick, A. K. M., Hossain, S. R., Halim, G. M. A., & Asao, T. (2015). Influence of soilless culture substrate on improvement of yield and produce quality of horticultural crops. In Soilless Culture - Use of Substrates for the Production of Quality Horticultural Crops. IntechOpen. https://doi.org/10.5772/59708

Barrow, C. J. (2012). Biochar: Potential for countering land degradation and for improving agriculture. Applied Geography, 34, 21–28. https://doi.org/10.1016/j.apgeog.2011.09.008

Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037

Cejka, J., Corma, A., & Zones, S. (2010). Zeolites and catalysis: synthesis, reactions and applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. http://doi.org/10.1002/9783527630295

Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16(8), 427–431. https://doi.org/10.1016/j.tplants.2011.03.011

Cheng, Y., Cai, Z. C., Chang, S. X., Wang, J., & Zhang, J. B. (2012). Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils, 48(8), 941–946. https://doi.org/10.1007/s00374-012-0687-0

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293. https://doi.org/10.3390/agronomy3020275

Clough, T. J., & Condron, L. M. (2010). Biochar and the nitrogen cycle: Introduction. Journal of Environmental Quality, 39(4), 1218–1223. https://doi.org/10.2134/jeq2010.0204

Dumroese, R. K., Heiskanen, J., Englund, K., & Tervahauta, A. (2011). Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy, 35(5), 2018–2027. https://doi.org/10.1016/j.biombioe.2011.01.053

Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913–921. https://doi.org/10.1094/PHYTO-100-9-0913

El-Kazzaz, K. A. & El-Kazzaz, A. A. (2017). Soilless agriculture a new and advanced method for agriculture development: an introduction. Agricultural Research & Technology: Open Access Journal, 3(2), 555610. http://dx.doi.org/10.19080/artoaj.2017.03.555610

Farrell, M., Macdonald, L. M., Butler, G., Chirino-Valle, I., & Condron, L. M. (2014). Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils, 50(1), 169–178. https://doi.org/10.1007/s00374-013-0845-z

Fredeen, A. L., Raab, T. K., Rao, I. M., & Terry, N. (1990). Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta, 181(3), 399–405. https://doi.org/10.1007/BF00195894

Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., Tsechansky, L., Borenshtein, M., & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1), 481–496. https://doi.org/10.1007/s11104-010-0544-6

Gruda, N., Qaryouti, M. M., & Leonardi, C. (2013). Growing media. In Good Agricultural Practices for greenhouse vegetable crops: Principles for Mediterranean climate areas, pp. 271–301. Rome: FAO Plant Production and Protection Paper. Retrieved from http://www.fao.org/3/i3284e/i3284e.pdf

Gruda, N., Gianquinto, G., Tüzel, Y., and Savvas, D. (2016). Culture soil-less. In Encyclopedia of soil sciences (R. Lal (ed.); 3rd ed., pp. 533–537). CRC Press, Taylor & Francis Group. https://doi.org/10.1081/e-ess3

Gruda, N., Savvas, D., Colla, G., & Rouphael, Y. (2018). Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables – A review. European Journal of Horticultural Science, 83(5), 319–328. https://doi.org/10.17660/eJHS.2018/83.5.5

Jouquet, E., Bloquel, E., Doan, T. T., Ricoy, M., Orange, D., Duc, T. T., Jouquet, E., Bloquel, E., Ricoy, M., Orange, D., & Rumpel, C. (2011). Do compost and vermicompost improve macronutrient retention and plant growth in degraded tropical soils? Compost Science and Utilization, 19(1), 15–24. https://doi.org/10.1080/1065657X.2011.10736972

Jouquet, P., Plumere, T., Thu, T. D., Rumpel, C., Duc, T. T., & Orange, D. (2010). The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Applied Soil Ecology, 46(1), 125–133. https://doi.org/10.1016/j.apsoil.2010.07.002

Kalra, Y (1997). Handbook of reference methods or plant analysis (1st ed). CRC Press, Taylor and Francis Group. https://doi.org/10.1201/97803678022337802233.

Khan, F. A., Kurklu, A., Ghafoor, A., Ali, Q., Umair, M., & Shahzaib. (2018). A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture, Environment and Food Sciences, 2(2), 59–66. http://derg_park.gov.tr/jaefs

Laird, D. A. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), 178–181. https://doi.org/10.2134/agronj2007.0161

Lazcano, C., & Domínguez, J. (2011). The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. In Soil Nutrient: Environmental Health – Physical, Chemical and Biological Factors. Hauppauge, New York, US: Nova Science Publishers, Inc. Retrieved from http://jdguez.webs.uvigo.es/wp-content/uploads/2012/01/the-use-of-vermicompost.pdf

Lehmann, J., da Silva Jr., J. P., Steiner, C., Nehls, T., Zech, W., & Glaser B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 249, 343–357. https://doi.org/https://doi.org/10.1023/A:1022833116184

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: science and technology (1st ed). Earthscan. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/First%20proof%2013-01-09.pdf

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 64. https://doi.org/10.3389/fevo.2018.00064

Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. https://doi.org/10.2136/sssaj2005.0383

Manyuchi, M. M., Mudamburi, T., Phiri, A., & Muredzi, P. (2013). Impact of vermicompost on lettuce cultivated soil. international journal of inventive engineering and sciences, 1(11), 41–43. Retrieved from https://www.researchgate.net/publication/257933663_Impact_of_vermicompost_on_lettuce_cultivated_soil

Mgbemere, H. E., Ekpa, I. C., & Lawal, G. I. (2017). zeolite synthesis, characterisation and application areas: A Review. International Research Journal of Environmental Sciences, 6(10), 45–59. Retrieved from http://www.isca.in/IJENS/Archive/v6/i10/7.ISCA-IRJEvS-2017-072.php

Nurhidayati, Ali, U., & Murwani, I. (2016). Yield and quality of cabbage (Brassica oleracea L. var. Capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agriculture and Agricultural Science Procedia, 11, 5–13. https://doi.org/10.1016/j.aaspro.2016.12.002

Nurhidayati, Ali, U., & Murwani, I. (2015). Influence of the kind of vermicompost material and earthworm Pontoscolex corethrurus population on the yield and quality of phak-coi mustard (Brassica rapa L.) with organic potting media. Proceeding of International Conference on Life Science and Biotechnology: Exploration and Conservation of Biodiversity, 168-176. Retrieved from https://www.researchgate.net/profile/Lita-Meilina/publication/337211094_PROCEEDING-ICOLIB2015/links/5dcbd1cd458515143507101a/PROCEEDING-ICOLIB2015.pdf#page=187

Nurhidayati, Machfudz, M., & Murwani, I. (2017). Pertumbuhan, hasil dan kualitas tanaman brokoli (Brassica oleracea L.) sebagai respon terhadap aplikasi tiga macam vermikompos dengan sistem penanaman secara organik. Prosiding Seminar Nasional Fakultas Pertanian Universitas Nasional: Optimalisasi Pemanfaatan Sumberdaya Lokal Menuju Kemandirian Pangan Nasional yang Berkelanjutan, 175-190. Retrieved from https://scholar.google.com/scholar?cluster=10919619192482386044&hl=en&oi=scholarr

Parashar, S., Sharma, H., & Garg, M. (2014). Antimicrobial and antioxidant activities of fruits and vegetable peels: A review. Journal of Pharmacognosy and Phytochemistry JPP, 3(31), 160–164. Retrieved from https://www.phytojournal.com/vol3Issue1/Issue_may_2014/23.1.pdf

Phuong, N. T. K., Khoi, C. M., Ritz, K., Linh, T. B., Minh, D. D., Duc, T. A., Sinh, N. V., Linh, T. T., & Toyota, K. (2020). Influence of rice husk biochar and compost amendments on salt contents and hydraulic properties of soil and rice yield in salt-affected fields. Agronomy, 10(8), 1101. https://doi.org/10.3390/agronomy10081101

Rembialkowska, E. (2007). Review quality of plant products from organic agriculture. Journal of the Science of Food and Agriculture, 87, 2757–2762. https://doi.org/10.1002/jsfa.3000

Savvas, D. (2003). Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. Food, Agriculture & Environment, 1(1), 80–86. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=FI2016100234

Savvas, D., Gianquinto, G., Tuzel, Y., & Gruda, N. (2013). Soilless culture. In Good Agricultural Practices for greenhouse vegetable crops: Principles for Mediterranean climate areas, pp. 271–301. Rome: FAO Plant Production and Protection Paper. Retrieved from http://www.fao.org/3/i3284e/i3284e.pdf

Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review. European Journal of Horticultural Science, 83(5), 280–293. https://doi.org/10.17660/eJHS.2018/83.5.2

Science Communication Unit, University of the West of England. (2013). Science for Environment Policy In-depth Report: Soil Contamination: Impacts on Human Health. European Commission’s Directorate-General Environment. Retrieved from https://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf

Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. (2010). Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Australian Journal of Soil Research, 48(6–7), 546–554. https://doi.org/10.1071/SR10002

Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H., & Zech, W. (2008). Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171(6), 893–899. https://doi.org/10.1002/jpln.200625199

Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., De MacÊdo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290. https://doi.org/10.1007/s11104-007-9193-9

United Nations. (2019). World population 2019. Department of Economic and social Affairs. Population Division. Retrieved January, 20, 2021, www.unpopulation.org

Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European journal of agronomy, 34(4), 231-238. https://doi.org/10.1016/j.eja.2011.01.006

Viger, M., Hancock, R. D., Miglietta, F., & Taylor, G. (2014). More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 7(4), 658–672. https://doi.org/10.1111/gcbb.12182

Williams, C. M. (2002). Nutritional quality of organic food: shades of grey or shades of green? Proceedings of the Nutrition Society, 61(1), 19–24. https://doi.org/10.1079/pns2001126

Worthington, V. (2001). Nutritional quality of organic versus conventional fruits, vegetables, and grains. Journal of Alternative and Complementary Medicine, 7(2), 161–173. https://doi.org/10.1089/107555301750164244

Zhang, Y. J., Gan, R. Y., Li, S., Zhou, Y., Li, N., Xu, D. P., & Li, H. B. (2015). (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138–21156. https://doi.org/10.3390/molecules201219753

Refbacks

  • There are currently no refbacks.