Fruit Morphology, Antioxidant Activity, Total Phenolic and Flavonoid Contents of Salacca zalacca (Gaertner) Voss by Applications of Goat Manures and Bacillus velezensis B-27

Haviah Hafidhotul Ilmiah, Endang Sulistyaningsih, Tri Joko

Abstract

Snake fruit (Salacca zalacca (Gaertner) Voss) is one of indigenous fruits from Southeast Asia that has been consumed for its antioxidant contents. Improving the fruit quality might increase its benefits for human health. This study aims to analyze fruit morphology, antioxidant activity, total phenolic and flavonoid contents of the fruit applied with goat manures and Bacillus velezensis B-27. The research used two-factor Randomized Complete Block Design (RCBD) with three blocks as replications. The first factor is the level of goat manure application i.e. 0 kg plant-1, 5 kg plant-1 and 10 kg plant-1, while the second factor is the bacteria application i.e. applied with Bacillus velezensis B-27 and without Bacillus velezensis B-27. The research was conducted in June until December 2019 at Turi, Sleman, Yogyakarta, Indonesia. Fruit length, diameter and shape were measured as morphology parameters. Antioxidant activities were measured using 2,2-Diphenyl-1-picrylhydrazyl, whereas flavonoid and phenolic contents were determined by the aluminium-chloride colorimetric and Folin-Ciocalteu methods, respectively. Means of each parameter were analyzed using ANOVA, continued with the Tukey’s HSD test at a 5% significance level. The result showed that the application of 10 kg goat manure per plant with bacteria increased the fruit length (76.78 mm) and the diameter (62.72 mm). Addition of 10 kg goat manure per-plant combined with Bacillus velezensis B-27 gave the highest antioxidant (IC50 of 37.83 µg.mL-1), flavonoid (5.35 mgGAE.100 g-1) and total phenolic contents (44 mgQE.100 g-1).

Keywords

antioxidant; flavonoid; goat manure; indigenous fruits; phenolic; snake fruit

Full Text:

PDF

References

Adijaya, I. N., & Yasa, I. M. R. (2015). Pengaruh pupuk organik dan penjarangan buah terhadap produktivitas salak gula pasir. Jurnal Pengkajian dan Pengembangan Teknologi Pertanian, 18(2), 195–206. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jpengkajian/article/view/4917

Albanchez, E. G., García-Villaraco, A., Lucas, J. A., Gutierrez, F. J., & Ramos-Solano, B. (2018). Priming fingerprint induced by Bacillus amyloliquefaciens QV15, a common pattern in Arabidopsis thaliana and in field-grown blackberry. Journal of Plant Interactions, 13(1), 398–408. https://doi.org/10.1080/17429145.2018.1484187

Ali, M. B., & McNear, D. H. (2014). Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biology, 14(1), 84. https://doi.org/10.1186/1471-2229-14-84

Belwal, T., Pandey, A., Bhatt, I. D., Rawal, R. S., & Luo, Z. (2019). Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports, 9(1), 5894. https://doi.org/10.1038/s41598-019-42270-2

BPS - Statistics Sleman Regency. (2018). Turi Subdistrict in Figures 2018. Retrieved from https://slemankab.bps.go.id/publication/2018/09/26/cb6cfd73532dc5953180edf9/kecamatan-turi-dalam-angka-2018.html

Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748

Chatzistathis, T., Papadakis, I. E., Papaioannou, A., Chatzissavvidis, C., & Giannakoula, A. (2020). Comparative study effects between manure application and a controlled-release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Scientia Horticulturae, 264, 109176. https://doi.org/10.1016/j.scienta.2020.109176

Cisternas-Jamet, J., Salvatierra-Martínez, R., Vega-Gálvez, A., Stoll, A., Uribe, E., & Goñi, M. G. (2020). Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annum) inoculated with Bacillus amyloliquefaciens. Scientia Horticulturae, 263, 109107. https://doi.org/10.1016/j.scienta.2019.109107

Esmaeili, A. K., Taha, R. M., Mohajer, S., & Banisalam, B. (2015). Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Research International, 2015, 643285. https://doi.org/10.1155/2015/643285

Fendiyanto, M. H., Satrio, R. D., & Darmadi, D. (2020). Metabolic profiling and pathway analysis in red arillus of Salacca sumatrana demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas, 21(9), 4361–4368. https://doi.org/10.13057/biodiv/d210955

Gichaba, V. M., Ndukhu, H. O., Muraya, M., Odilla, G. A., & Ogolla, F. O. (2020). Preparation and evaluation of goat manure-based vermicompost for organic garlic production in Manyatta Sub-county, Kenya. International Journal of Environment, Agriculture and Biotechnology, 5(1), 51–55. https://doi.org/10.22161/ijeab.51.7

Gorinstein, S., Poovarodom, S., Leontowicz, M., Namiesnik, J., & Vearasilp, S. (2011). Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits: In vitro and in vivo studies. Food Research International, 44(7), 2222–2232. https://doi.org/10.1016/j.foodres.2010.10.009

Gorinstein, S., Haruenkit, R., Poovarodom, S., Park, Y. S., Vearasilp, S., Suhaj, M., Ham, K. S., Heo, B. G., Cho, J. Y., & Jang, H. G. (2009). The comparative characteristics of snake and kiwi fruits. Food and Chemical Toxicology, 47(8), 1884–1891. https://doi.org/10.1016/j.fct.2009.04.047

Gowtham, H. G., Murali, M., Brijesh Singh, S., Lakshmeesha, T.R., Narasimha Murthy, K., Amruthesh, K.N., & Niranjana, S. R. (2018). Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biological Control, 126, 209–217. https://doi.org/10.1016/j.biocontrol.2018.05.022

Gül, A., Kidoglu, F., & Tüzel, Y. (2008). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum, L.) growing in perlite. Spanish Journal of Agricultural Research, 6(3), 422–429. https://doi.org/10.5424/sjar/2008063-335

Handajaningsih, M., Hasanudin, Saputra, H. E., Marwanto, & Yuningtyas, A. P. (2019). Modification of growing medium for container melon (Cucumis melo L.) production using goat manure and dolomite. International Journal on Advanced Science, Engineering and Information Technology, 9(2), 441–447. https://doi.org/10.18517/ijaseit.9.2.2543

Hariadi, Y. C., Nurhayati, A. Y., & Hariyani, P. (2016). Biophysical monitoring on the effect on different composition of goat and cow manure on the growth response of maize to support sustainability. Agriculture and Agricultural Science Procedia, 9, 118–127. https://doi.org/10.1016/j.aaspro.2016.02.135

Hill-Cottingham, D. G., & Williams, R. R. (2015). Effect of time of application of fertilizer nitrogen on the growth, flower development and fruit set of Maiden apple trees, var. Lord Lambourne, and on the distribution of total nitrogen within the trees. Journal of Horticultural Science, 42(4), 319–338. https://doi.org/10.1080/00221589.1967.11514218

Iqbal, A., Dong, Q., Wang, X., Gui, H., Zhang, H., Zhang, X., & Song, M. (2020). Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. International Journal of Molecular Sciences, 21(4), 1500. https://doi.org/10.3390/ijms21041500

Jimoh, M. O., Afolayan, A. J., & Lewu, F. B. (2019). Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Scientific Reports, 9(1), 12965. https://doi.org/10.1038/s41598-019-49276-w

Kadaikunnan, S., Rejiniemon, S. S., Khaled, J. M., Alharbi, N. S., & Mothana, R. (2015). In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Annals of Clinical Microbiology and Antimicrobials, 14(1), 9. https://doi.org/10.1186/s12941-015-0069-1

Leontowicz, H., Leontowicz, M., Drzewiecki, J., Haruenkit, R., Poovarodom, S., Park, Y. S., Jung, S. T., Kang, S. G., Trakhtenberg, S., & Gorinstein, S. (2006). Bioactive properties of Snake fruit (Salacca edulis Reinw) and Mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. European Food Research and Technology, 223(5), 697–703. https://doi.org/10.1007/s00217-006-0255-7

Li, Y., Han, L. R., Zhang, Y., Fu, X., Chen, X., Zhang, L., Mei, R., & Wang, Q. (2013). Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. Plant Pathology Journal, 29(2), 168–173. https://doi.org/10.5423/PPJ.SI.08.2012.0125

Lyu, Y., Porat, R., Yermiyahu, U., Heler, Y., Holland, D., & Dag, A. (2019). Effects of nitrogen fertilization on pomegranate fruit, aril and juice quality. Journal of the Science of Food and Agriculture, 100(4), 1678–1686. https://doi.org/10.1002/jsfa.10182

Mayrowani, H. (2016). Pengembangan pertanian organik di Indonesia. Forum Penelitian Agro Ekonomi, 30(2), 91–108. http://dx.doi.org/10.21082/fae.v30n2.2012.91-108

Mazumdar, P., Pratama, H., Lau, S. E., Teo, C. H., & Harikrishna, J. A. (2019). Biology, phytochemical profile and prospects for snake fruit: An antioxidant-rich fruit of South East Asia. Trends in Food Science and Technology, 91, 147–158. https://doi.org/10.1016/j.tifs.2019.06.017

Mowa, E., Akundabweni, L., Chimwamurombe, P., Oku, E., & Mupambwa, H. A. (2017). The influence of organic manure formulated from goat manure on growth and yield of tomato (Lycopersicum esculentum). African Journal of Agricultural Research, 12(41), 3061–3067. https://doi.org/10.5897/ajar2017.12657

Nurrochman, Trisnowati, S., & Muhartini, S. (2013). Pengaruh pupuk kalium klorida dan umur penjarangan buah terhadap hasil dan mutu salak (Salacca zalacca (Gaertn.) Voss) ‘Pondoh Super.’ Vegetalika, 2(1), 54–65. Retrieved from https://jurnal.ugm.ac.id/index.php/jbp/article/view/1618

Oubihi, A., Hosni, H., Nounah, I., Ettouil, A., Harhar, H., Alaoui, K., Ouhssine, M., & Guessous, Z. (2020). Phenolic content, antioxidant activity, anti-inflammatory potential, and acute toxicity study of Thymus leptobotrys Murb. extracts. Biochemistry Research International, 2020, 8823209. https://doi.org/10.1155/2020/8823209

Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). In vitro Antibacterial activities of methanolic extracts of fruits, seeds, and bark of Zanthoxylum armatum DC. Journal of Tropical Medicine, 2020, 2803063. https://doi.org/10.1155/2020/2803063

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. https://doi.org/10.1016/j.ejmech.2020.112891

Rahma, A. A., Suryanti, Somowiyarjo, S., & Joko, T. (2020). Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23(9), 1113–1121. https://dx.doi.org/10.3923/pjbs.2020.1113.1121

Rahman, M., Rahman, M., Sabir, A. A., Mukta, J. A., Khan, M. M. A., Mohi-Ud-Din, M., Miah, M. G., & Islam, M. T. (2018). Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Scientific Reports, 8(1), 2504. https://doi.org/10.1038/s41598-018-20235-1

Reddy, I. B., Chaitra, B. M., Kammar, S. C,. & Chethana, M. C. (2019). Studies on effect of PGPRS and organic matter on nutrient content and antioxident activity of Morinda citrifolia L. Trends in Biosciences, 8(24), 6897–6899. Retrieved from https://www.researchgate.net/publication/331166294_Studies_on_Effect_of_PGPRS_and_Organic_Matter_on_Nutrient_content_and_Antioxident_Activity_of_Morinda_citrifolia_L

Saleh, M. S. M., Siddiqui, M. J., Mediani, A., Ismail, N. H., Ahmed, Q. U., So’ad, S. Z. M., & Saidi-Besbes, S. (2018). Salacca zalacca: A short review of the palm botany, pharmacological uses and phytochemistry. Asian Pacific Journal of Tropical Medicine, 11(12), 645–652. https://doi.org/10.4103/1995-7645.248321

Salehi, A., Fallah, S., Zitterl-Eglseer, K., Kaul, H. P., Surki, A. A., & Mehdi, B. (2019). Effect of organic fertilizers on antioxidant activity and bioactive compounds of fenugreek seeds in intercropped systems with buckwheat. Agronomy, 9(7), 367. https://doi.org/10.3390/agronomy9070367

Santos-Sánchez, N. F., Salas-Coronado, R., Hernández-Carlos, B., & Villanueva-Cañongo, C. (2019). Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In Plant physiological aspects of phenolic compounds, (pp. 35-50). London, UK: IntechOpen. https://doi.org/10.5772/intechopen.83815

Sharma, K., Sharma, S., & Prasad, S. R. (2019). PGPR: Renewable tool for sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(1), 525–530. https://doi.org/10.20546/ijcmas.2019.801.058

Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., & Hu, F. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89, 25–34. https://doi.org/10.1016/j.apsoil.2015.01.005

Suica-Bunghez, I. R., Teodorescu, S., Dulama, I. D., Voinea, O. C., Imionescu, S., & Ion, R. M. (2016). Antioxidant activity and phytochemical compounds of snake fruit (Salacca zalacca). IOP Conference Series: Materials Science and Engineering, 133, 012051. https://doi.org/10.1088/1757-899X/133/1/012051

Sutini, Widiwurjani, Augustien, N., Purwanto, D. A., & Muslihatin, W. (2020). Secondary metabolites production of epigallocatechin gallate through in vitro culture of Camellia sinensis l with cinnamic acid precursors. AIP Conference Proceedings, 2231, 040082. https://doi.org/10.1063/5.0002565

Tan, S. S., Tan, S. T., & Tan, C. X. (2020). Antioxidant, hypoglycemic and anti-hypertensive properties of extracts derived from peel, fruit and kernel of Salak. British Food Journal, 122(10), 3029–3038. https://doi.org/10.1108/BFJ-03-2020-0233

Tilaar, A., Ranti, A., & Mun’im, A. (2017). The efficacy study of snake fruit (Salacca edulis Reinw var. Bongkok) extract as skin lightening agent. Pharmacognosy Journal, 9(2), 235–238. https://doi.org/10.5530/pj.2017.2.39

Tiwari, S., Prasad, V., & Lata, C. (2019). Bacillus: Plant growth promoting bacteria for sustainable agriculture and environment. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biotechnology in Agro-environmental Sustainability (pp. 43–55). Elsevier. https://doi.org/10.1016/B978-0-444-64191-5.00003-1

Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., Liu, K., & Ding, Y. (2020). Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides. Frontiers in Microbiology, 10, 2889. https://doi.org/10.3389/fmicb.2019.02889

Yang, J., Wu, X. bin, Chen, H. lei, Sun-waterhouse, D., Zhong, H. bo, & Cui, C. (2019). A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22. Food Chemistry, 272, 396–403. https://doi.org/10.1016/j.foodchem.2018.08.037

Zargoosh, Z., Ghavam, M., Bacchetta, G., & Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Scientific Reports, 9(1), 16021. https://doi.org/10.1038/s41598-019-52605-8

Zhu, Y., Jia, H., Xi, M., Xu, L., Wu, S., & Li, X. (2017). Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chemistry, 214, 39–46. https://doi.org/10.1016/j.foodchem.2016.06.108

Refbacks

  • There are currently no refbacks.