Application of Silica Nutrients Improves Plant Growth and Biomass Production of Paddy under Saline Conditions

Nasrudin Nasrudin, Arrin Rosmala, Rachmanto Bambang Wijoyo


Salinity makes disorder to plant physiological causes decreasing in biomass production. Applying silica nutrients is expected to increase paddy (Oryza sativa L.) tolerance to salinity. The study aims to examine the effects of the application of silica nutrients under saline conditions regarding plant growth analysis and its correlation to paddy biomass production. The research was arranged in a factorial completely randomized design with two factors. The first factor was NaCl concentrations consisting of four levels, including non-saline, 4 dS m-1, 8 dS m-1 and 12 dS m-1. The second factor was silica doses per kg soil with three levels including 300 mg, 450 mg and 600 mg. The treatments were repeated three times. The result showed that the NaCl concentration affected root shoot ratio at harvest. Silica dosage affected leaf area index 8 weeks after planting (WAP), root shoot ration at harvest and net assimilation rate. Interaction of NaCl concentration and silica dose affected root shoot ratio in 8 WAP and at harvest. Plant growth analysis illustrated on leaf area index, plant growth rate and root shoot ratio correlated positively with biomass production. However, the harvest index and net assimilation rate showed negative correlations to biomass production. The application of silica nutrients had the potential to improve paddy growth and yield under saline conditions.


assimilation; micronutrients; plant physiology; rice growth; salt-affected soil

Full Text:



Abbas, G., Saqib, M., Rafique, Q., Rahman, M. A., Akhtar, J., Haq, M. A., & Nasim, M. (2013). Effect of salinity on grain yield and grain quality of wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Sciences, 50(1), 185–189. Retrieved from,by%20grain%20weight%20plant%2D1.

Aguilar, M., Fernández-Ramírez, J. L., Aguilar-Blanes, M., & Ortiz-Romero, C. (2017). Rice sensitivity to saline irrigation in Southern Spain. Agricultural Water Management, 188, 21–28.

Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., Suwarno, W. B., & Safitri, H. (2018). Determination of selection criteria for screening of rice genotypes for salinity tolerance. SABRAO Journal of Breeding and Genetics, 50(3), 279–294. Retrieved from

BPS-Statistics Indonesia. (2016). Statistik sumber daya laut dan pesisir. Jakarta: Badan Pusat Statistik. Retrieved from

BPS-Statistics Indonesia. (2020). Luas panen, produksi, dan produktivitas padi menurut Provinsi 2018-2020. Jakarta: Badan Pusat Statistik. Retrieved from

Dobermann, A., & Fairhurst, T. (2000). Rice: nutrient disorders & nutrient management (1st ed.). Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI). Retrieved from

Firmansyah, E. (2016). Tanggapan padi (Oryza sativa L.) terhadap cekaman rendaman dan salinitas (Master Thesis). Yogyakarta, Indonesia: Universitas Gadjah Mada. Retrieved from

Firmansyah, E., Kurniasih, B., & Indradewa, D. (2016). Respon varietas padi tahan salin terhadap beberapa durasi genangan dengan tingkat salinitas berbeda. Artikel Ilmiah, 1, 50–62. Retrieved from

Flam-Shepherd, R., Huynh, W. W., Coskun, D., Hamam, A. M., Britto, D. T., & Kronzucker, H. J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 69(7), 1679–1692.

Frasetya, B., Harisman, K., Sudrajat, D., & Subandi, M. (2019). Utilization of rice husk silicate extract to improve the productivity of paddy Ciherang cultivar. Bulgarian Journal of Agricultural Science, 25(3), 499–505. Retrieved from

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1991). Fisiologi tanaman budidaya. Jakarta: UI Press. Retrieved from,5&authuser=3

Ghosh, B., Ali, Md. N., & Gantait, S. (2016). Response of rice under salinity stress: A review update. Rice Research, 4(2), 1000167.

Gomez, K. A., & Gomez, A.A. (1995). Prosedur statistik untuk penelitian pertanian. The second edition: Jakarta: UI Press. Retrieved from,5&authuser=3

Gorji, T., Tanik, A., & Sertel, E. (2015). Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth and Planetary Science, 15, 507–512.

Haq, T. U., Akhtar, J., Nawaz, S., & Ahmad, R. (2009). Morpho-physiological response of rice (Oryza sativa L.) varieties to salinity stress. Pakistan Journal of Botany, 41(6), 2943–2956. Retrieved from

Hernandez, J. A. (2019). Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences, 20(10), 2408–2415.

Ikhsanti, A., Kurniasih, B., & Indradewa, D. (2018). Pengaruh aplikasi silika terhadap pertumbuhan dan hasil tanaman padi (Oryza sativa L.) pada kondisi salin. Vegetalika, 7(4), 1–11.

Iqbal, T. (2018). Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. Journal of the Saudi Society of Agricultural Sciences, 17(4), 445–453.

Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G., & Lutts, S. (2020). NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy, 10(6), 864–875.

Kandil, A. A., Sharief, A. E., & Nassar, E. S. E. (2012). Response of some rice (Oryza sativa L.) cultivars to germination under salinity stress. International Journal of Agriculture Sciences, 4(6), 272–277.

Karolinoerita, V., & Annisa, W. (2020). Salinisasi lahan dan permasalahnnya di Indonesia. Jurnal Semberdaya Lahan, 14(2), 91–99.

Keshavarzi, A., Bagherzadeh, A., Omran, E. E., & Iqbal, M. (2016). Modeling of soil exchangeable sodium percentage using easily obtained indices and artificial intelligence-based models. Model. Earth System and Environment, 2, 130.

Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422–428.

Liu, J., Shabala, S., Shabala, L., Zhou, M., Meinke, H., Venkataraman, G., Chen, Z., Zeng, D., & Zhao Q. (2019). Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Frontiers in Plant Science, 10, 1361.

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 30(2), 30.

Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., & Rao A. S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 505–518.

Mindari, W., Guntoro, W., Kusuma, Z., & Syekhfani. (2013). Dynamic of saline soil cations after NaCl application on rice growth and yields. Journal of Tropical Soils, 18(3), 185–194.

Mindari, W., Sasongko, P. E., Kusuma, Z., & Syekhfani. (2015). Characteristics of saline soil and effect of fertilizer application to rice yield. International Journal of Agronomy and Agricultural Research (IJAAR), 6(1), 7–15. Retrieved from

Mungara, E., Indradewa, D., & Rogomulyo, R. (2013). Analisis pertumbuhan dan hasil padi sawah (Oryza sativa L.) pada sistem pertanian konvensional transisi organik. Jurnal Vegetalika, 2(3), 1–12.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681.

Neto, A. D., Prisco, J. T., Enéas-Filho, J., De Lacerda, C. F., Silva, J. V., Da Costa, P. H. A., & Gomes-Filho, E. (2004). Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 16(1), 31–38.

Pontigo, S., Ribera, A., Gianfreda, L., Mora, M. de la L., Nikolic, M., & Cartes, P. (2015). Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta, 242, 23–37.

Puspitasari, S. A., & Indradewa, D. (2019). The effects of silica on growth and yield of chrysanthemum plants (Dendranthema sp.) cultivar Sheena and Snow White. Ilmu Pertanian (Agricultural Science), 4(3), 98–102.

Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sholars Journal of Agriculture and Veterainary Sciences, 4(4), 126–131. Retrieved from

Radanielson, A. M., Angeles, O., Li, T., Ismail, A. M., & Gaydon, D. S. (2018). Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 220, 46–56.

Reddy, I. N. B. L., Kim, B.-K., Yoon, I.-S., Kim, K.-H., & Kwon, T.-R. (2017). Salt tolerance in rice: focus on mechanisms and approaches. Rice Science, 24(3), 123–144.

Shokat, S., & Großkinsky, D. K. (2019). Tackling salinity in sustainable agriculture - what developing countries may learn from approaches of the developed world. Sustainability, 11(17), 4558.

Soil Research Institute. (2009). Analisis kimia tanah, tanaman, air, dan pupuk. Bogor: Balai Penelitian Tanah. Retrivied from Retrieved from

Sumida, H. (1992). Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice uptake in cool regions in Japan. Bulletin of the Tohoku National Agriculture Experiment Station, 85, 1–46 (Summaries in English). Retrieved from,5&hl=id&authuser=3

Syamsuddin, Indradewa, D., Sunarminto, B. H., & Yudono, P. (2011). Pertumbuhan dan hasil dua kultivar padi dan berbagai jarak tanam pada sistem pengairan genangan dalam parit. Jurnal Agroland, 18(3), 155–161. Retrieved from

Tampoma, W. P., Nurmala, T., & Rachmadi, M. (2017). Pengaruh dosis silika terhadap karakter fisiologı dan hasil tanaman padi (Oryza sativa L.) kultivar lokal poso (kultıvar 36-Super dan Tagolu). Jurnal Kultivasi, 16(2), 320–325.

Tatar, Ö., Brueck, H., Gevrek, M. N., & Asch, F. (2010). Physiological responses of two turkish rice (Oryza sativa L.) varieties to salinity. Turkish Journal of Agriculture and Forestry, 34, 451–459.

Toledo, M. Z., Castro, G. S. A., Crusciol, C. A. C., Soratto, R. P., Cavariani, C., Ishizuka, M. S., & Picoli, L. B. (2012). Silicon leaf application and physiological quality of white oat and wheat seeds. Semina: Ciências Agrárias, Londrina, 33(5), 1693–1702.

Tunçtürk, M., Tunçtürk, R., Yildirim, B., & Çiftçi, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10), 1827–1832. Retrieved from,all%20the%20cultivars%20significantly%20increased.

Widyastuti, L. P. Y. (2017). Keragaan varietas PTB IPB pada variasi jumlah bibit per lubang dan pemupukan kalium di Kabupaten Jembrana Bali (Undergraduate Thesis). Bogor, Indonesia: IPB University. Retrieved from

Yang, C., Ma, S., Lee, I., Kim, J., & Liu, S. (2015). Saline-induced changes of epicuticular wazy layer on the Puccinellia tenuiflora and Oryza sativa leave surfaces. Biological Research, 48, 33.

Zakariyya, F. (2016). Menimbang indeks luas daun sebagai variabel penting pertumbuhan tanaman kakao. Warta Pusat Penelitian Kopi Dan Kakao Indonesia, 28(3), 8–12. Retrieved from

Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48(3), 191–206.

Zeng, L. (2005). Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L.) seedlings under salinity stress using multivariate analysis. Plant and Soil, 268, 51–59.


  • There are currently no refbacks.