Application of Silica Nutrients Improves Plant Growth and Biomass Production of Paddy under Saline Conditions
Abstract
Salinity makes disorder to plant physiological causes decreasing in biomass production. Applying silica nutrients is expected to increase paddy (Oryza sativa L.) tolerance to salinity. The study aims to examine the effects of the application of silica nutrients under saline conditions regarding plant growth analysis and its correlation to paddy biomass production. The research was arranged in a factorial completely randomized design with two factors. The first factor was NaCl concentrations consisting of four levels, including non-saline, 4 dS m-1, 8 dS m-1 and 12 dS m-1. The second factor was silica doses per kg soil with three levels including 300 mg, 450 mg and 600 mg. The treatments were repeated three times. The result showed that the NaCl concentration affected root shoot ratio at harvest. Silica dosage affected leaf area index 8 weeks after planting (WAP), root shoot ration at harvest and net assimilation rate. Interaction of NaCl concentration and silica dose affected root shoot ratio in 8 WAP and at harvest. Plant growth analysis illustrated on leaf area index, plant growth rate and root shoot ratio correlated positively with biomass production. However, the harvest index and net assimilation rate showed negative correlations to biomass production. The application of silica nutrients had the potential to improve paddy growth and yield under saline conditions.
Keywords
Full Text:
PDFReferences
Abbas, G., Saqib, M., Rafique, Q., Rahman, M. A., Akhtar, J., Haq, M. A., & Nasim, M. (2013). Effect of salinity on grain yield and grain quality of wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Sciences, 50(1), 185–189. Retrieved from https://www.researchgate.net/publication/276172495_Effect_of_salinity_on_grain_yield_and_grain_quality_of_wheat_Triticum_aestivum_L#:~:text=Salinity%20resulted%20in%20a%20significant,by%20grain%20weight%20plant%2D1.
Aguilar, M., Fernández-Ramírez, J. L., Aguilar-Blanes, M., & Ortiz-Romero, C. (2017). Rice sensitivity to saline irrigation in Southern Spain. Agricultural Water Management, 188, 21–28. https://doi.org/10.1016/j.agwat.2017.03.027
Anshori, M. F., Purwoko, B. S., Dewi, I. S., Ardie, S. W., Suwarno, W. B., & Safitri, H. (2018). Determination of selection criteria for screening of rice genotypes for salinity tolerance. SABRAO Journal of Breeding and Genetics, 50(3), 279–294. Retrieved from http://sabraojournal.org/wp-content/uploads/2018/09/SABRAO-J-Breed-Genet-50-3-279-294-ANSHORI.pdf
BPS-Statistics Indonesia. (2016). Statistik sumber daya laut dan pesisir. Jakarta: Badan Pusat Statistik. Retrieved from https://media.neliti.com/media/publications/48274-ID-statistik-sumber-daya-laut-dan-pesisir-2016.pdf
BPS-Statistics Indonesia. (2020). Luas panen, produksi, dan produktivitas padi menurut Provinsi 2018-2020. Jakarta: Badan Pusat Statistik. Retrieved from https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html
Dobermann, A., & Fairhurst, T. (2000). Rice: nutrient disorders & nutrient management (1st ed.). Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI). Retrieved from http://books.irri.org/9810427425_content.pdf
Firmansyah, E. (2016). Tanggapan padi (Oryza sativa L.) terhadap cekaman rendaman dan salinitas (Master Thesis). Yogyakarta, Indonesia: Universitas Gadjah Mada. Retrieved from http://etd.repository.ugm.ac.id/penelitian/detail/109920
Firmansyah, E., Kurniasih, B., & Indradewa, D. (2016). Respon varietas padi tahan salin terhadap beberapa durasi genangan dengan tingkat salinitas berbeda. Artikel Ilmiah, 1, 50–62. Retrieved from https://docplayer.info/58455348-Respon-varietas-padi-tahan-salin-terhadap-beberapa-durasi-genangan-dengan-tingkat-salinitas-berbeda.html
Flam-Shepherd, R., Huynh, W. W., Coskun, D., Hamam, A. M., Britto, D. T., & Kronzucker, H. J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 69(7), 1679–1692. https://doi.org/10.1093/jxb/erx460
Frasetya, B., Harisman, K., Sudrajat, D., & Subandi, M. (2019). Utilization of rice husk silicate extract to improve the productivity of paddy Ciherang cultivar. Bulgarian Journal of Agricultural Science, 25(3), 499–505. Retrieved from https://www.agrojournal.org/25/03-11.pdf
Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1991). Fisiologi tanaman budidaya. Jakarta: UI Press. Retrieved from https://scholar.google.co.id/scholar?cluster=11497094686897590216&hl=id&as_sdt=2005&sciodt=0,5&authuser=3
Ghosh, B., Ali, Md. N., & Gantait, S. (2016). Response of rice under salinity stress: A review update. Rice Research, 4(2), 1000167. https://doi.org/10.4172/2375-4338.1000167
Gomez, K. A., & Gomez, A.A. (1995). Prosedur statistik untuk penelitian pertanian. The second edition: Jakarta: UI Press. Retrieved from https://scholar.google.co.id/scholar?cluster=9265073153615186504&hl=id&as_sdt=2005&sciodt=0,5&authuser=3
Gorji, T., Tanik, A., & Sertel, E. (2015). Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth and Planetary Science, 15, 507–512. https://doi.org/10.1016/j.proeps.2015.08.062
Haq, T. U., Akhtar, J., Nawaz, S., & Ahmad, R. (2009). Morpho-physiological response of rice (Oryza sativa L.) varieties to salinity stress. Pakistan Journal of Botany, 41(6), 2943–2956. Retrieved from http://www.pakbs.org/pjbot/PDFs/41(6)/PJB41(6)2943.pdf
Hernandez, J. A. (2019). Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences, 20(10), 2408–2415. http://dx.doi.org/10.3390/ijms20102408
Ikhsanti, A., Kurniasih, B., & Indradewa, D. (2018). Pengaruh aplikasi silika terhadap pertumbuhan dan hasil tanaman padi (Oryza sativa L.) pada kondisi salin. Vegetalika, 7(4), 1–11. https://doi.org/10.22146/veg.41144
Iqbal, T. (2018). Rice straw amendment ameliorates harmful effect of salinity and increases nitrogen availability in a saline paddy soil. Journal of the Saudi Society of Agricultural Sciences, 17(4), 445–453. http://dx.doi.org/10.1016/j.jssas.2016.11.002
Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G., & Lutts, S. (2020). NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in rice (Oryza sativa L.). Agronomy, 10(6), 864–875. https://doi.org/10.3390/agronomy10060864
Kandil, A. A., Sharief, A. E., & Nassar, E. S. E. (2012). Response of some rice (Oryza sativa L.) cultivars to germination under salinity stress. International Journal of Agriculture Sciences, 4(6), 272–277. https://doi.org/10.9735/0975-3710.4.6.272-277
Karolinoerita, V., & Annisa, W. (2020). Salinisasi lahan dan permasalahnnya di Indonesia. Jurnal Semberdaya Lahan, 14(2), 91–99. https://dx.doi.org/10.21082/jsdl.v14n2.2020.91-99
Keshavarzi, A., Bagherzadeh, A., Omran, E. E., & Iqbal, M. (2016). Modeling of soil exchangeable sodium percentage using easily obtained indices and artificial intelligence-based models. Model. Earth System and Environment, 2, 130. https://doi.org/10.1007/s40808-016-0185-8
Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147(2), 422–428. https://doi.org/10.1016/j.envpol.2006.06.008
Liu, J., Shabala, S., Shabala, L., Zhou, M., Meinke, H., Venkataraman, G., Chen, Z., Zeng, D., & Zhao Q. (2019). Tissue-specific regulation of Na+ and K+ transporters explains genotypic differences in salinity stress tolerance in rice. Frontiers in Plant Science, 10, 1361. https://doi.org/10.3389/fpls.2019.01361
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 30(2), 30. https://doi.org/10.3390/horticulturae3020030
Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay., Kundu, S., & Rao A. S. (2014). A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(3), 505–518. https://doi.org/10.1007/s40011-013-0270-y
Mindari, W., Guntoro, W., Kusuma, Z., & Syekhfani. (2013). Dynamic of saline soil cations after NaCl application on rice growth and yields. Journal of Tropical Soils, 18(3), 185–194. https://doi.org/10.5400/jts.2013.18.3.185
Mindari, W., Sasongko, P. E., Kusuma, Z., & Syekhfani. (2015). Characteristics of saline soil and effect of fertilizer application to rice yield. International Journal of Agronomy and Agricultural Research (IJAAR), 6(1), 7–15. Retrieved from https://www.innspub.net/wp-content/uploads/2015/01/IJAAR-V6No1-p7-15.pdf
Mungara, E., Indradewa, D., & Rogomulyo, R. (2013). Analisis pertumbuhan dan hasil padi sawah (Oryza sativa L.) pada sistem pertanian konvensional transisi organik. Jurnal Vegetalika, 2(3), 1–12. https://doi.org/10.22146/veg.3993
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Neto, A. D., Prisco, J. T., Enéas-Filho, J., De Lacerda, C. F., Silva, J. V., Da Costa, P. H. A., & Gomes-Filho, E. (2004). Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazilian Journal of Plant Physiology, 16(1), 31–38. https://doi.org/10.1590/s1677-04202004000100005
Pontigo, S., Ribera, A., Gianfreda, L., Mora, M. de la L., Nikolic, M., & Cartes, P. (2015). Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta, 242, 23–37. https://doi.org/10.1007/s00425-015-2333-1
Puspitasari, S. A., & Indradewa, D. (2019). The effects of silica on growth and yield of chrysanthemum plants (Dendranthema sp.) cultivar Sheena and Snow White. Ilmu Pertanian (Agricultural Science), 4(3), 98–102. https://doi.org/10.22146/ipas.46129
Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sholars Journal of Agriculture and Veterainary Sciences, 4(4), 126–131. Retrieved from http://saspjournals.com/wp-content/uploads/2017/05/SJAVS-44126-131.pdf
Radanielson, A. M., Angeles, O., Li, T., Ismail, A. M., & Gaydon, D. S. (2018). Describing the physiological responses of different rice genotypes to salt stress using sigmoid and piecewise linear functions. Field Crops Research, 220, 46–56. https://doi.org/10.1016/j.fcr.2017.05.001
Reddy, I. N. B. L., Kim, B.-K., Yoon, I.-S., Kim, K.-H., & Kwon, T.-R. (2017). Salt tolerance in rice: focus on mechanisms and approaches. Rice Science, 24(3), 123–144. https://doi.org/10.1016/j.rsci.2016.09.004
Shokat, S., & Großkinsky, D. K. (2019). Tackling salinity in sustainable agriculture - what developing countries may learn from approaches of the developed world. Sustainability, 11(17), 4558. https://doi.org/10.3390/su11174558
Soil Research Institute. (2009). Analisis kimia tanah, tanaman, air, dan pupuk. Bogor: Balai Penelitian Tanah. Retrivied from Retrieved from https://balittanah.litbang.pertanian.go.id/ind/dokumentasi/juknis/juknis_kimia2.pdf
Sumida, H. (1992). Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice uptake in cool regions in Japan. Bulletin of the Tohoku National Agriculture Experiment Station, 85, 1–46 (Summaries in English). Retrieved from https://scholar.google.co.id/scholar?cites=13542158913034300438&as_sdt=2005&sciodt=0,5&hl=id&authuser=3
Syamsuddin, Indradewa, D., Sunarminto, B. H., & Yudono, P. (2011). Pertumbuhan dan hasil dua kultivar padi dan berbagai jarak tanam pada sistem pengairan genangan dalam parit. Jurnal Agroland, 18(3), 155–161. Retrieved from http://jurnal.untad.ac.id/jurnal/index.php/AGROLAND/article/view/4296
Tampoma, W. P., Nurmala, T., & Rachmadi, M. (2017). Pengaruh dosis silika terhadap karakter fisiologı dan hasil tanaman padi (Oryza sativa L.) kultivar lokal poso (kultıvar 36-Super dan Tagolu). Jurnal Kultivasi, 16(2), 320–325. https://doi.org/10.24198/kultivasi.v16i2.12612
Tatar, Ö., Brueck, H., Gevrek, M. N., & Asch, F. (2010). Physiological responses of two turkish rice (Oryza sativa L.) varieties to salinity. Turkish Journal of Agriculture and Forestry, 34, 451–459. https://doi.org/10.3906/tar-0908-311
Toledo, M. Z., Castro, G. S. A., Crusciol, C. A. C., Soratto, R. P., Cavariani, C., Ishizuka, M. S., & Picoli, L. B. (2012). Silicon leaf application and physiological quality of white oat and wheat seeds. Semina: Ciências Agrárias, Londrina, 33(5), 1693–1702. https://doi.org/10.5433/1679-0359.2012v33n5p1693
Tunçtürk, M., Tunçtürk, R., Yildirim, B., & Çiftçi, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10), 1827–1832. Retrieved from https://www.ajol.info/index.php/ajb/article/view/93091#:~:text=As%20shown%20in%20this%20study,all%20the%20cultivars%20significantly%20increased.
Widyastuti, L. P. Y. (2017). Keragaan varietas PTB IPB pada variasi jumlah bibit per lubang dan pemupukan kalium di Kabupaten Jembrana Bali (Undergraduate Thesis). Bogor, Indonesia: IPB University. Retrieved from http://repository.ipb.ac.id/handle/123456789/83511
Yang, C., Ma, S., Lee, I., Kim, J., & Liu, S. (2015). Saline-induced changes of epicuticular wazy layer on the Puccinellia tenuiflora and Oryza sativa leave surfaces. Biological Research, 48, 33. https://doi.org/10.1186/s40659-015-0023-x
Zakariyya, F. (2016). Menimbang indeks luas daun sebagai variabel penting pertumbuhan tanaman kakao. Warta Pusat Penelitian Kopi Dan Kakao Indonesia, 28(3), 8–12. Retrieved from https://warta.iccri.net/index.php/2019/11/07/warta-vol-28-no-3-2016/
Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48(3), 191–206. https://doi.org/10.1016/S0378-3774(00)00146-3
Zeng, L. (2005). Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L.) seedlings under salinity stress using multivariate analysis. Plant and Soil, 268, 51–59. https://doi.org/10.1007/s11104-004-0180-0
Refbacks
- There are currently no refbacks.