Growth Evaluation of Banana cv. Barangan as the Effect of Trichoderma sp. and Covering Types during Acclimatization Process

Andre Sparta, Deni Emilda


Acclimatization is one of the important processes in banana micro propagation before plantlets/planting materials are ready to be cultivated in the field. Trichoderma sp. are well known as plant promoter fungi that can promote plant growth and increase survival rate of plantlets. The study was arranged in a Completely Randomized Factorial Design with two factors and four replications. The first factors was covering type i.e. 1) individual covering and 2) mass covering. The second factor was the proportion of Trichoderma addition into manure, namely A) manure without the addition of Trichoderma sp. (control), B) Trichoderma sp. : manure = 1 : 400 (w/w), C) Trichoderma sp. : manure = 1 : 800 (w/w) and D) Trichoderma sp. : manure = 1 : 1,200 (w/w). The purpose of this study was to investigate the effect of Trichoderma sp. applications and covering types in the growth of banana plantlets cv. Barangan during the acclimatization process. The results showed that the best treatment to induce plantlet growth during the acclimatization process was the addition of Trichoderma sp.: manure with 1 : 400 (w/w) proportion and individual covering. The combination of Trichoderma sp. : manure with 1 : 400 (w/w) proportion and individual covering produced plant height and leaf length 8.5 cm and 4.4 cm, respectively, compared to the treatment without Trichoderma sp. addition that produced plantlets with 6.6 cm height and 3.4 cm leaf length. No significant interaction was shown between Trichoderma sp. proportions and covering types on leaf width, the number of leaves and root length parameters.


acclimatization; banana; plant growth promoting fungi; Trichoderma sp.

Full Text:



Al-Ani, L. K. T. (2018). Trichoderma: Beneficial Role in Sustainable Agriculture by Plant Disease Management. In: Egamberdieva D., Ahmad P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5, pp. 105–126. Springer, Singapore. Crossref

Bag, N., Kumar, A., Nandi, S. K., Pandey, A., & Palni, L. M. S. (2001). Efficient Rooting and Biological Hardening of Tissue Culture Raised Tea (Camellia sinensis (L.) O. Kuntze) Plants. Proceedings International Conference on O-Cha (Tea) Culture and Science. Session II: Production., 132–155. Shizuoka, Japan. Retrieved from Link

Barari, H. (2016). Biocontrol of Tomato Fusarium Wilt by Trichoderma Species under In Vitro and In Vivo Conditions. Cercetări Agronomice În Moldova, 49(1), 91–98. Crossref

Benítez, T., Rincón, A. M., Limón, M. C., & Codon, A. C. (2004). Biocontrol Mechanisms of Trichoderma Strains. International Microbiology, 7(4), 249–260. Retrieved from Link

Brotman, Y., Landau, U., Cuadros-Inostroza, A., Takayuki, T., Fernie, A. R., Chet, I., Viterbo, A., & Willmitzer, L. (2013). Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of The Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathogens, 9(3), e1003221. Crossref

Castillo, A. G., Puig, C. G., & Cumagun, C. J. R. (2019). Non-Synergistic Effect of Trichoderma harzianum and Glomus spp. in Reducing Infection of Fusarium Wilt in Banana. Pathogens, 8(43), 1–8. Crossref

Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of Tissue Cultured Plantlets: from Laboratory to Land. Biotechnology Letters, 32(9), 1199–1205. Crossref

Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. Journal of the Science of Food and Agriculture, 95(8), 1706–1715. Crossref

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Alfaro-Cuevas, R., & López-Bucio, J. (2014). Trichoderma spp. Improve Growth of Arabidopsis Seedlings under Salt Stress through Enhanced Root Development, Osmolite Production, and Na+ Elimination through Root Exudates. Molecular Plant-Microbe Interactions, 27(6), 503–514. Crossref

Damayanti, T. A., Pardede, H., & Mubarik, N. R. (2007). Utilization of Root-Colonizing Bacteria to Protect Hot-Pepper Against Tobacco Mosaic Tobamovirus. HAYATI Journal of Biosciences, 14(3), 105–109. Crossref

El_Komy, M. H. El, Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. The Plant Pathology Journal, 31(1), 50–60. Crossref

Eliza, Emilda, D., Hermanto, C., & Djatnika, I. (2014). Patent No. IDP 000037067. Indonesia: Direktorat Jenderal Kekayaan Intelektual.

Emilda, D., Sutanto, A., Sukartini, & Jumjunidang. (2020). Application of Salicylic Acid to Induce Disease Resistance Against Fusarium Wilt on Banana. IOP Conference Series: Earth and Environmental Science, 468, 012026. Crossref

FAO. (2019). Banana Facts and Figures. Retrieved from Link

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1991). Physiology of Crop Plant (Fisiologi Tanaman Budidaya, alih bahasa: H. Susilo). Jakarta: UI-Press.

Gutiarrez-Miceli, F. A., Ayora-Talavera, T., Abud-Archila, M., Salvador-Figueroa, M. Adriano-Anaya, L., Hernandez, M. A., & Dendooven, L. (2008). Acclimatization of Micropropagated Orchid Guarianthe skinnerii Inoculated with Trichoderma harzianum. Asian Journal of Plant Sciences, 7(3), 327–330. Crossref

Hallam, D. (1995). The world banana economy. In: Gowen S. (eds) Bananas and Plantains. World Crop Series. Springer, Dordrecht. Crossref

Hazarika, B. N. (2003). Acclimatization of Tissue-Cultured Plants. Current Science, 85(12), 1704–1712. Retrieved from Link

Khan, B., Akash, Z., Asad, S., Javed, N., Rajput, N. A., Jabbar, A., Din, W. U., & Atif, R. M. (2017). Antagonistic Potential of Trichoderma harzianum Against Fusarium oxysporum fsp cubense Associated with Panama Wilt of Banana. Pakistan Journal of Phytopathology, 29(01), 111–116. Crossref

Kumar, R., Ahmed, M. F., Mir, H., Mehta, S., & Sohane, R. K. (2019). Study on In vitro Establishment and Callus Induction in Banana cv. Grand Naine. Current Journal of Applied Science and Technology, 33(3), 1–5. Crossref

Kushwaha, R. K., Singh, S., Pandey, S. S., Rao, D. V., Nagegowda, D. A., Kalra, A., & Babu, C. S. V. (2019). Compatibility of Inherent Fungal Endophytes of Withania somnifera with Trichoderma viride and its Impact on Plant Growth and Withanolide Content. Journal of Plant Growth Regulation, 38, 1228–1242. Crossref

Lahav, E. (1995). Banana nutrition. In: Gowen S. (eds) Bananas and Plantains, (pp. 258–316). World Crop Series. Springer, Dordrecht. Crossref

Laughlin, D. C., Leppert, J. J., Moore, M. M., & Sieg, C. H. (2010). A Multi‐Trait Test of the Leaf‐Height‐Seed Plant Strategy Scheme with 133 Species from a Pine Forest Flora. Functional Ecology, 24(3), 493–501. Crossref

Mahfut, Daryono, B. S., Indrianto, A., & Somowiyarjo, S. (2019). Effectiveness Test of Orchid Mycorrhizal Isolate (Ceratorhiza and Trichoderma) Indonesia and Its Role as a Biofertilizer. Annual Research & Review in Biology, 33(4), 1–7. Crossref

Martínez-Medina, A., Roldán, A., & Pascual, J. A. (2011). Interaction between Arbuscular Mycorrhizal Fungi and Trichoderma harzianum under Conventional and Low Input Fertilization Field Condition in Melon Crops: Growth Response and Fusarium Wilt Biocontrol. Applied Soil Ecology, 47(2), 98–105. Crossref

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. Crossref

Murunde, R., Muriithi, I., & Wainwright, H. (2018). Potential Use of Endophytic Bacterial and Fungi as Bio Fertilizer to Promote Plant Growth in Tissue Culture Banana. Journal of Molecular Studies and Medicine Research, 3(2), 148–160. Retrieved from Link

Nainggolan, P., Harahap, A. D., Napitupulu, B., Karokaro, S., & Rajagukguk, J. (1998). Improving of Banana var. Barangan Technological Package in Deli Serdang, Medan (Indonesia). Prosiding Seminar Nasional Ekspose Hasil Penelitian Dan Pengkajian Teknologi Pertanian. Medan, Indonesia: BPTP Sumatera Utara. Retrieved from Link

Ortas, İ., Rafique, M., Akpinar, C., & Kacar, Y. A. (2017). Growth Media and Mycorrhizal Species Effect on Acclimatization and Nutrient Uptake of Banana Plantlets. Scientia Horticulturae, 217, 55–60. Crossref

Pandey, A., Palni, L. M. S., & Bag, N. (2000). Biological Hardening of Tissue Culture Raised Tea Plants Through Rhizosphere Bacteria. Biotechnology Letters, 22(13), 1087–1091. Crossref

Poerba, S., Martanti, D., & Ahmad, F. (2018). Deskripsi Pisang Koleksi Pusat Penelitian Biologi LIPI. Retrieved from Link

Pospóšilová, J., Tichá, I., Kadleček, P., Haisel, D., & Plzáková, Š. (1999). Acclimatization of Micropropagated Plants to Ex Vitro Conditions. Biologia Plantarum, 42(4), 481–497. Crossref

Robinson, J. C., & Sáuco, V. G. (2009). Weaning (Acclimatization) of In Vitro-Produced Banana Plants. Fruits, 64(5), 325–332. Crossref

Shah, S., Thapa, B. B., Chand, K., Pradhan, S., Singh, A., Varma, A., Sen Thakuri, L., Joshi, P., & Pant, B. (2019). Piriformospora indica Promotes the Growth of the In-Vitro-Raised Cymbidium aloifolium Plantlet and Their Acclimatization. Plant Signaling & Behavior, 14(6), 1596716. Crossref

Silva, B. B., Banaay, C. G., & Salamanez, K. (2019). Trichoderma-Induced Systemic Resistance Against the Scale Insect (Unaspis mabilis Lit & Barbecho) in Lanzones (Lansium domesticum Corr.). Agriculture & Forestry/Poljoprivreda i Sumarstvo, 65(2), 59–78. Crossref

Singh, B. N., Singh, A., Singh, G. S., & Dwivedi, P. (2015). Potential Role of Trichoderma asperellum T42 Strain in Growth of Pea Plant for Sustainable Agriculture. Journal of Pure and Applied Microbiology, 9(2), 1069–1074. Retrieved from Link

Srihartanto, E., & Indradewa, D. (2019). Effects of Planting Time and Cultivar on Leaf Physiology and Seed Yield of Soybean (Glycine max (L.) Merr). Caraka Tani: Journal of Sustainable Agriculture, 34(2), 115–127. Crossref

Tenkouano, A., Hauser, S., Coyne, D., & Coulibaly, O. (2006). Clean Planting Materials and Management Practices for Sustained Production of Banana and Plantain in Africa. Chronica Horticulturae, 46(2), 14–18. Retrieved from Link

Thomas, J., Ajay, D., Kumar, R. R., & Mandal, A. K. A. (2010). Influence of Beneficial Microorganisms During In Vivo Acclimatization of In Vitro-Derived Tea (Camellia sinensis) Plants. Plant Cell, Tissue and Organ Culture (PCTOC), 101(3), 365–370. Crossref

Westoby, M. (1998). A Leaf-Height-Seed (LHS) Plant Ecology Strategy Scheme. Plant and Soil, 199(2), 213–227. Crossref

Winarto, B., & Prama Yufdy, M. (2017). Establishment of In Vitro Propagation Protocol of Gerbera Jamesonii Bolus Ex Hook F.: Explant and Media Selection to Plantlet Acclimatization. Journal of Agricultural Science, 28(1), 32–40. Crossref

Wong, K. F., Suhaimi, O., & Fatimah, K. (2017). On-Farm Grower-Friendly Nursery Technique for Acclimatization of Tissue-Cultured Banana Seedlings. Asian Journal For Poverty Studies (AJPS), 3(2), 146–151. Crossref

Zhao, L., Wang, F., Zhang, Y., & Zhang, J. (2014). Involvement of Trichoderma asperellum Strain T6 in Regulating Iron Acquisition in Plants. Journal of Basic Microbiology, 54(S1), S115–S124. Crossref


  • There are currently no refbacks.