Urea Application to Enhance Sugarcane Trash Decomposition: A Field Test in PTPN VII of Cinta Manis District in South Sumatera

Kenny Marlian Putri, Dwi Setyawan, Satria Jaya Priatna


Sugarcane harvest results in plant residues, consisting of leaves, stems and roots nearly 20 ton ha-1. The plantation of PTPN VII in Cinta Manis District applied urea with a dosage of 5 kg ha-1 but the result was not effective. There is a potential to try a higher dosage of urea to enhance trash decomposition. This research aims to evaluate urea application on biomass decomposition. This research was conducted on the Plot 07 Rayon 3 of PTPN VII, District of Cinta Manis at Ketiau, Lubuk Keliat of Ogan Ilir, South Sumatra, using Split Plot design. Main plot is trash sampling time and subplot is urea dosage with three replicates. ANCOVA was used for soil data. The rate of decomposition of the litter was calculated by the change in the initial condition of research with each week on observation resulting in decomposition rate graphs. Urea application at 10 kg ha-1 reduced C/N of the litter ratio to almost 21:1 and was followed by the highest total nitrogen increase to 0.18%, while the highest organic carbon decline for urea treatment of 6 kg ha-1 amounted to 13.78%. In conclusion, higher rate of urea application is still required to enhance sugarcane litter decomposition.


biomass decomposition; nutrient release; sugarcane litter; urea application

Full Text:



Aprianis, Y. (2011). Produksi dan Laju Dekomposisi Serasah Acacia crassicarpa A. Cunn. di PT. Arara Abadi. Jurnal Tekno Tanaman Hutan, 4(1), 41–47. Retrieved from Link

Awe, G. O., Reichert, J. M., & Wendroth, O. O. (2015). Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil and Tillage Research, 150, 93–106. Crossref

da Luz, F. B., da Silva, V. R., Kochem Mallmann, F. J., Bonini Pires, C. A., Debiasi, H., Franchini, J. C., & Cherubin, M. R. (2019). Monitoring soil quality changes in diversified agricultural cropping systems by the Soil Management Assessment Framework (SMAF) in southern Brazil. Agriculture, Ecosystems & Environment, 281, 100–110. Crossref

de Aquino, G. S., de Conti Medina, C., da Costa, D. C., Shahab, M., & Santiago, A. D. (2017). Sugarcane straw management and its impact on production and development of ratoons. Industrial Crops and Products, 102, 58–64. Crossref

De Oliveira, M. W., Trivelin, P. C. O., Kingston, G., Barbosa, M. H, P., & Vitti, A. C. (2002). Decomposition and release of nutrients from sugarcane trash in two agricultural environments in Brazil. Proc. Aust. Soc. Sugar Cane Technol., 24, 290–296. Retrieved from Link

Dietrich, G., Sauvadet, M., Recous, S., Redin, M., Pfeifer, I. C., Garlet, C. M., … Giacomini, S. J. (2017). Sugarcane mulch C and N dynamics during decomposition under different rates of trash removal. Agriculture, Ecosystems & Environment, 243, 123–131. Crossref

Djuarnani, N., Kristian, & Setiawan, B. S. (2005). Cara Cepat Membuat Kompos. Jakarta: Agromedia Pustaka.

Fortes, C., Trivelin, P. C. O., & Vitti, A. C. (2012). Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, 189–198. Crossref

Fortes, C., Vitti, A. C., Otto, R., Ferreira, D. A., Franco, H. C. J., & Trivelin, P. C. O. (2013). Contribution of nitrogen from sugarcane harvest residues and urea for crop nutrition. Scientia Agricola, 70(5), 313–320. Crossref

Gava, G. J. de C., Trivelin, P. C. O., Vitti, A. C., & Oliveira, M. W. de. (2005). Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecuária Brasileira, 40(7), 689–695. Crossref

Graham, M. H., & Haynes, R. J. (2006). Organic matter status and the size, activity and metabolic diversity of the soil microbial community in the row and inter-row of sugarcane under burning and trash retention. Soil Biology and Biochemistry, 38(1), 21–31. Crossref

Gultom, I. M. (2009). Laju Dekomposisi Serasah Daun Rhizopora mucronata pada berbagai Tingkat Salinitas. Skripsi. Universitas Sumatera Utara, Medan. Retrieved from Link

Hartemink, A. E. (2008). Chapter 3 Sugarcane for Bioethanol: Soil and Environmental Issues. In Advances in Agronomy, 99, 125–182. Crossref

Jannah, M. (2003). Evaluasi Kulitas Kompos dari Berbagai Kota sebagai Dasar dalam Pembuatan SOP (Standard Operating Procedure) Pengomposan. Skripsi. Institut Pertanian Bogor. Retrieved from Link

Jayanti, S. D. (2017). Laju Dekomposisi Serasah Hutan Taman Nasional Gunung Leuser Resort Tenggulun. In PROSIDING SEMINAR NASIONAL MIPA Langsa-Aceh, 30 Oktober 2017. Universitas Syiah Kuala. Retrieved from Link

Karp, S. G., Woiciechowski, A. L., Soccol, V. T., & Soccol, C. R. (2013). Pretreatment strategies for delignification of sugarcane bagasse: a review. Brazilian Archives of Biology and Technology, 56(4), 679–689. Crossref

Leal, M. R. L. V., Galdos, M. V., Scarpare, F. V., Seabra, J. E. A., Walter, A., & Oliveira, C. O. F. (2013). Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11–19. Crossref

Meier, E. A., & Thorburn, P. J. (2016). Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments. Frontiers in Plant Science, 7, 1017. Crossref

Menon, R. G. (1973). Soil and Water Analysis. A laboratory manual for the analysis of soil and water. Rome: Food and Agriculture Organization UNDP.

Mirwan, M. (2015). Optimasi Pengomposan Sampah Kebun dengan Variasi Aerasi dan Penambahan Kotoran Sapi Sebagai Bioaktivator. Teknik Lingkungan, 4(1), 61–66. Retrieved from Link

Moyano, F. E., Manzoni, S., & Chenu, C. (2013). Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry, 59, 72–85. Crossref

Quirk, R. G., & Zwemer, T. G. (2007). Integrated practices for an improved sustainable, subtropical sugarcane industry: a case study. In Congress 26th, International Society of Sugar Cane Technologists, 26, 449–453. Durban, South Africa: ISSCT. Retrieved from Link

Rachid, C. T. C. C., Pires, C. A., Leite, D. C. A., Coutinho, H. L. C., Peixoto, R. S., Rosado, A. S., … Balieiro, F. de C. (2016). Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Brazilian Journal of Microbiology, 47(2), 322–326. Crossref

Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M. (2013). Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 29(6), 540–553. Crossref

Rimartika, N. S. (2017). Efektivitas Pemberian Berbagai Macam Bahan Aditif terhadap Proses Pengomposan Bagase Tebu. Skripsi. Universitas Muhammadiyah Yogyakarta. Retrieved from Link

Rípoli, T. C. C., Molina Jr., W. F., & Rípoli, M. L. C. (2000). Energy potential of sugar cane biomass in Brazil. Scientia Agricola, 57(4), 677–681. Crossref

Rodríguez-Machín, L., Arteaga-Pérez, L. E., Pérez-Bermúdez, R. A., Casas-Ledón, Y., Prins, W., & Ronsse, F. (2018). Effect of citric acid leaching on the demineralization and thermal degradation behavior of sugarcane trash and bagasse. Biomass and Bioenergy, 108, 371–380. Crossref

Rosmarkam, A., & Yuwono, N. W. (2002). Ilmu Kesuburan Tanah. Yogyakarta: Kanisius.

Steel, R. G. D., & Torrie, J. H. (1981). Principles and Procedures of Statistics, A Biometrical Approach (2nd Edition). Singapore: McGraw-Hill Inc.

Sugandi, W. K., Setiawan, R. P. A., & Hermawan, W. (2013). Uji Kinerja Unit Pemotong Serasah Tebu Tipe Reel. Bionatura, Jurnal Ilmu-Ilmu Hayati Dan Fisik, 15(3), 149–155. Retrieved from Link

Surendran, U., Ramesh, V., Jayakumar, M., Marimuthu, S., & Sridevi, G. (2016). Improved sugarcane productivity with tillage and trash management practices in semi arid tropical agro ecosystem in India. Soil and Tillage Research, 158, 10–21. Crossref

Thorburn, P. J., Meier, E. A., Collins, K., & Robertson, F. A. (2012). Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research, 120, 99–111. Crossref

Thorburn, P. J., Meier, E. A., & Probert, M. E. (2005). Modelling nitrogen dynamics in sugarcane systems: Recent advances and applications. Field Crops Research, 92(2–3), 337–351. Crossref

Vallis, I., Parton, W. J., Keating, B. A., & Wood, A. W. (1996). Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil and Tillage Research, 38(1–2), 115–132. Crossref

Van Soest, P. J. (2006). Rice Straw The Role of Silica and Treatment to Improve Quality. Animal Feed Science and Technology, 130(3–4), 137–171. Crossref

Wijayanti, R., & Prasetya, B. (2018). Pengaruh Pemberian Urea terhadap Laju Dekomposisi Serasah Tebu di Pusat Penelitian Gula Jengkol, Kabupaten Kediri. Jurnal Tanah Dan Sumberdaya Lahan, 5(1), 793–799. Retrieved from Link

Wood, A. W. (1991). Management of crop residues following green harvesting of sugarcane in north Queensland. Soil and Tillage Research, 20(1), 69–85. Crossref

Yuwono, M. (2008). Dekomposisi dan Mineralisasi Beberapa Macam Bahan Organik. Jurnal Agronomi, 12(1), 49–58. Retrieved from Link


  • There are currently no refbacks.